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Z-Score Optimization. The minimum energy gap is not the only
measure of fitness that could be used to optimize sequences
for specificity. Z scores, for instance, were used successfully to
optimize sequences against misfolding and aggregation (1). Here
we found Z scores not to be sufficiently discriminating, with
Z-score optimization producing sequences with much lower
specificity in terms of both the average and the minimum energy
gap. A high Z score, as a statistical measure, does not ensure that
specific interactions are uniformly stronger than nonspecific
ones. The main reason is that the average binding energy entering
the Z score is dominated by the large number of very weak non-
specific interactions, in particular those associated with translated
and rotated binding modes (∼320 per protein pair). As a result,
we found in Z-score optimizations that a few nonspecific
complexes were nearly as strong as the specific ones. Our goal
is to ensure that specific binding dominates over nonspecific
binding, as determined from the coupled binding equilibria of
the entire system. We therefore maximize the energy gap as the
physical quantity that directly controls the relative amount of
nonspecific binding.

Monte Carlo Sampling. In the sampling of sequence space, Monte
Carlo (MC) moves consisted of point mutations and operations
on pairs of specific binding partners including cyclical shifting
of the pair of sequences, and partial sequence swaps that mimic
V(D)J recombination (2). For the cyclical move, each residue is
shifted by some number of residues h from its original location
(si becomes siþh with periodic boundary conditions). In V(D)J
recombination moves, a segment of one sequence is swapped
with the corresponding segment of a binding partner. For point
mutations and initialization of the random sequences, residues
were selected according to the experimental residue frequency
distribution. With each MC step we either mutated a single re-
sidue in 0.5–1% of the sequences (a minimum of one interfacial
sequence was mutated per step), or performed a cyclical or V(D)J
move on a single pair of binding partners.

To enhance global sampling in our search for sequences with
a large ΔE, we used Hamiltonian replica exchange by varying
the J parameter for different simulations, with the best results
for values between J ¼ 0.1–1∕kBT separated at intervals of
0.02–0.1∕kBT and using 8–16 replicas. The temperature that con-
trols the acceptance rate between different configurations is
started at values around 10−4 and 10−5 and lowered 5–6 times,
with each MC round consisting of 2 million mutation attempts.
Additional replica exchange in the temperature variable was seen
to provide only a marginal if any improvement over the original
simulations.

In our interaction model we limit the size of binding interfaces
to L ¼ 25 residues. Increasing the interface size will increase the
gap and decrease the scaling exponent, as shown for the binary
model in Fig. 1D. However, any gains in available sequence space
from larger interfaces are easily offset in a more detailed model
if one considers that nonspecific binding is not restricted to the
specific interfaces, but can occur anywhere at the protein surface.
By trading off these two opposing effects, our model should give
at least a semiquantitative description of the competition
between specific and nonspecific interactions in protein–protein
interaction networks.

Binding Equilibrium Calculations. To solve for the equilibrium
concentrations of each protein and its complexes we use two
methods, the stochastic Gillespie algorithm (3) and perturbation
theory. In the Gillespie algorithm the rates of dissociation are
arbitrarily set to kd ¼ 1 s−1 for all complexes, and the rates of
association to kb ¼ kd∕Kd to give the proper equilibria. Initial
protein concentrations (of monomers) were set at 100 nM, con-
sistent with average protein concentrations observed in yeast (4).
The volume is then chosen such that each free protein is initia-
lized to 10,000 monomers. We run six trajectories of 10–20 s each
and average the results. For each protein we then determine the
ratio of the concentration of nonspecific complexes to the sum of
concentrations of specific and free protein.

The specific interactions between binding partners are in
general much stronger than the possible nonspecific interactions.
Because of this separation in the magnitude of the dissociation
constants, we can also use first order perturbation theory to ac-
curately solve for all equilibrium concentrations. This entailed
first solving the uncoupled quadratic equations for the concentra-
tions of all specific complexes, and then correcting for the con-
tributions of the nonspecific reactions by solving a system of
linear equations. For the chain topology and the yeast networks
we used only the Gillespie algorithm.

Scaling Exponent of the Energy Gap. To derive the dependence of
the scaling exponent on the length of the sequences L in the
binary model, we use the Hamming bound (5) for N∕2 binary se-
quences, or N proteins. In the binary model the specific binding
partners are always identical strings. The remaining sequence op-
timization against nonspecific binding is then equivalent to
choosing N∕2 points on an L-dimensional hypercube, such that
the N∕2 points are mutually as far apart as possible. An upper
bound for the maximum number of proteins of length L that
can be mutually separated by a Hamming distance of at least
Δ is (5) N ¼ 2Lþ1

∑⌊ðΔ−1Þ∕2⌋
k¼0

ðLkÞ
. The binomial sum in the denominator

is equivalent to 2LI1∕2ðL −D;Dþ 1Þ, where I1∕2 is the incomplete
beta function and D ¼ ⌊ Δ−1

2
⌋. To estimate the scaling, we elim-

inate the floor function on Δ by using the midpoint,D ¼ Δ∕2 − 1.
The incomplete beta function is monotonically increasing over
the range Δ ¼ 0 to L, as is its derivative. We approximate this
function by a power law αΔ1∕γ . To determine the dependence
of the exponent γ on the length L of the sequences, we use
the ratio of the function and its first derivative with respect to

Δ, which results in γΔ ¼ I1∕2ðL−D;Dþ1Þ
1
2
d
dDI1∕2ðL−D;Dþ1Þ jD¼L∕4−1. The exponent

γ is evaluated at D ¼ L∕4 − 1, corresponding to Δ ¼ L∕2, where
the scaling assumption is accurate. To simplify I1∕2 in the limit of
large L −D and D, we use its integral representation,
I1∕2ða;bÞ ¼ Γðaþ bÞΓ−1ðaÞΓ−1ðbÞ∫ 1∕2

0 ta−1ð1 − tÞb−1dt and approx-
imate the integrand tL−D−1ðt − 1ÞD with an exponential
21−L exp½2ðL − 2D − 1Þðt − 1∕2Þ� that is readily integrated. For
the gamma functions, we use Stirling’s approximation. For large
L, the exponent in the power law becomes γ ¼ ðln 3

4
Lþ 4þln 3

3
Þ−1,

scaling as 1∕L.
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Fig. S1. Convergence of the Gillespie algorithm simulations. (A) Number concentration of free proteins as a function of time for a system of N ¼ 400 proteins
in the Fives network topology, simulated with the Gillespie algorithm. Each colored line is a distinct protein. The hub proteins are rapidly consumed in com-
plexes with their partners, and hence their free protein concentrations approach zero. The four partners of these hub proteins must compete for the hub
protein, and therefore about 25% of each type of protein forms complexes, and most of the remainder, 75%, remain free in solution. (B) Concentration of
nonspecific complexes, normalized by the specific complex plus free protein concentrations, as a function of time simulated with the Gillespie algorithm.
Results are shown for systems with different topologies and N ≈ 500. Convergence is achieved for all systems after about 3–4 s. The data in A correspond
to the ratio shown with blue stars. For the Pairs, Threes and Fives topology we also plot with horizontal lines the value calculated using perturbation theory,
which is in excellent agreement for all three topologies.

Fig. S2. Comparison of the average concentration of nonspecific complexes normalized by the sum of the concentrations of the specific complex and free
protein, calculated with the Gillespie algorithm (GA, filled symbols) and perturbation theory (PT, open symbols). We plot results for systems optimized with the
Pairs and Threes topology as well as the Threes topology.
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Fig. S3. Cumulative distribution function (CDF) of the probability of observing a minimum energy gap for each of the interfaces in the yeast interaction
network fragment. The red line is the CDF for the original network connectivity of 52 interfaces (Fig. 2A). The black and the blue lines are for the modified
40 interface networks with minimal number of chains (Fig. 2B) andmaximal number of chains (Fig. 2C), respectively. In all three networks, the highly connected
interfaces are responsible for the smallest ΔE values. The network with the largest ΔE (i.e., highest specificity) is the minimally connected network, whereas the
maximally connected network has the smallest ΔE (lowest specificity).

Fig. S4. Effect on nonspecific binding from mixing of subcellular compartments. The curves show the distributions of the dissociation constants KNS of non-
specific complexes in the replicated yeast network. KNS is normalized by the mean specific dissociation constant, hKSi, obtained from the average specific
binding energy. Results are shown for the two best, independently optimized sequence sets with N ¼ 268 interfaces each (red and blue triangles), and
for the combined set of 2N interfaces without further optimization (purple diamonds). Additional sequence optimization (black circles) shifts the curve
to the right, thus reducing the number of competitive nonspecific complexes.

Johnson and Hummer www.pnas.org/cgi/doi/10.1073/pnas.1010954108 3 of 4

http://www.pnas.org/cgi/doi/10.1073/pnas.1010954108


Fig. S5. Comparison of nonspecific complex formation with different protein concentrations. For the Pairs network we calculated the fraction of nonspecific
complexes formed at equilibrium for the case that each protein has a total concentration of 100 nM irrespective of the number N of proteins (red circles), and
the case that the total protein concentration is 0.1 mM, divided equally among the N proteins (black squares). For the second case, the total concentration of
each protein is thus ð0.1 mMÞ∕N. The red and black lines are guides to the eye that represent the best fit to the data using the function aNb, where a and b are
fit parameters.
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