Supporting Information

Takahashi et al. 10.1073/pnas.1012582108

SI Text

Chromatin Immunoprecipitation (ChIP). To analyze Top1p-DNA complexes, Top1p was tagged at its C terminus with GFP-tag, and was expressed from its endogenous promoter and at its normal chromosomal loci. We performed two experiments to test whether Top1p-GFP is functional. We measured Top1p tagging impact on camptothecin sensitivity (Fig. S5). At 20 µg/mL camptothecin, both wild type and Top1-GFP strain are mainly resistant to camptothecin indicating, that the tag does not enhance trapping on DNA. In an srs2 background, which strongly sensitizes cells to camptothecin (1), Top1 tagging does not impact camptothecin sensitivity. In addition, we tested whether Top1tagging influence the transcription associated mutagenesis which strongly depends on a functional Top1 (Table S2). In the pGAL1on condition, the level of -2/-3 deletions is similar between the wild-type strain (13.0e-7) and the TOP1-GFP strain (9.7e-7). These two results indicate that the tagging of Top1 does not affect its ability to be trapped on DNA.

ChIP analyses were performed using modifications of (2). Experiments were realized starting from 100 mL of exponential growing cultures of BT46 (pGAL1-CAN1, TOP1-GFP KanMX6). Cells were grown in YP Glucose (pGAL1-off) or YP Galactose (pGAL1-on) until OD = 0.5-0.7. For camptothecin experiments, cells were grown in YP Glucose with 2% DMSO and with or without 20 μ g/mL camptothecin from OD = 0.2 to OD = 0.4–0.6. Cells were collected, successively washed in 20 mM Tris · HCl, pH8.0, and FA buffer (50 mM Hepes/150 mM NaCl/1 mM EDTA/1% Triton/0.1% sodium deoxycholate/0.1% SDS/1 mM AEBSF) and resuspended in 1 mL of FA buffer. An equal volume of glass beads (of diameter 0.5 mm) was added, and cells were disrupted by vortexing for 45 min at 4 °C. The lysate was diluted into 4 mL of FA buffer, and the glass beads were discarded. The crosslinked chromatin was pelleted by centrifugation at $17,000 \times g$ for 20 min, resuspended in 800 µl of FA buffer for 1 h at 4 °C, and sonicated to yield an average DNA fragment size of 400 bp (range, 100-1,000 bp). Finally, the sample was adjusted to 1.6 mL with FA buffer, clarified by centrifugation at $10,000 \times g$ for 30 min, and aliquots of the resultant chromatin solution were stored at -80 °C.

Chromatin solution (500 μ l) was incubated with 5 μ g of anti-GFP antibody (Roche Applied Science) coupled to 100 μ l of Dynabeads anti-mouse IgG (Dynal Biotech ASA, Oslo, Norway). After 120 min at 21 °C on a rotator, beads were washed twice in 1 mL of FA buffer, once for 10 min in 0.5 mL of FA buffer with 500 mM NaCl, once in 0.5 mL of 10 mM Tris · HCl, pH 8.0/0.25 M LiCl/1 mM EDTA/0.5% N-P40/0.5% sodium deoxycholate, and once in 0.5 mL of TE (10 mM Tris · HCl, pH 8.0/1 mM EDTA). Immunoprecipitated material was eluted from the beads by heating for 20 min at 65 °C in 125 μ L of 25 mM Tris · HCl, pH 7.5/ 5 mM EDTA/0.5% SDS, and then incubated at 37 °C in the presence of 1 mg/mL Pronase (Roche Applied Science). DNA was purified by using QIAquick PCR purification kit (Qiagen, Valencia, CA) and analyzed by quantitative PCR.

In all quantitative PCR experiments, immunoprecipitated DNA was normalized to input DNA, which corrects for differences in DNA amounts in samples from different experiments. Each 25 μ L PCR mixture contained 12.5 μ l of 2 \times Platinum SYBR Green qPCR Supermix-UDG (Invitrogen) 5 μ l of diluted DNA template (either immunoprecipitated or input DNA), and 250 nM forward and reverse primers. All real-time PCR runs included a standard curve of 10-fold serial dilutions to calculate DNA mass in arbitrary units. The use of a standard curve allows the user to select only PCR data generated during a reaction with 80–100% efficiency. Real-time PCR quantitation was performed with each ChIP sample in duplicate and averaged to obtain a technical replicate value per sample to control for pipetting error.

PCR primers were designed to amplify ~ 200 bp at the following positions of the *CAN1* locus: 201-375, 520-689, 802-942, 1,108-1,294, and 1,566-1,733 bp. In addition, four primer couples were chosen outside the *CAN1* ORF, 458-209 bp upstream the start codon, and 150-325, and 565-758 downstream the stop codon. The primer sequences are available upon request.

Signals are expressed as the ratio between samples from galactose growth and glucose growth conditions or between $20 \,\mu\text{g/mL}$ camptothecin-treated and untreated conditions. The data are presented as the mean of two biological replicate for camptothecin experiment and three biological replicates for the other experiment, with error bars representing 1 SEM.

Deng C, Brown JA, You D, Brown JM (2005) Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170:591–600.

Guglielmi B, Soutourina J, Esnault C, Werner M (2007) TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl Acad Sci USA 104:16062–16067.

Cassier-Chauvat C, Fabre F (1991) A similar defect in UV-induced mutagenesis conferred by the rad6 and rad18 mutations of Saccharomyces cerevisiae. *Mutat Res* 254:247–253.

Lebedeva N, Auffret Vander Kemp P, Bjornsti MA, Lavrik O, Boiteux S (2006) Trapping of DNA topoisomerase I on nick-containing DNA in cell free extracts of Saccharomyces cerevisiae. DNA Repair (Amst) 5:799–809.

Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. *Mol Cell Biol* 12:3224–3234.

Fig. S1. Localization of Can^R mutations outside of *CAN1* ORF and consequence on *CAN1* transcription. (*A*) Schematic drawing of the *pTET-CAN1* construct. Arrows point to mutations observed in two Can^R clones (clone A and clone B) isolated under high transcription (*pTET-on*), which display no mutation inside the *CAN1* ORF. (*B*) Steady-state level of *CAN1* mRNA under high transcription (*pTET-on*) in wild-type, clone A, and clone B strains.

1	11	21	31	41	51	61 -	71	81	91	
ATGACAAATT	CAAAAGAAGA	CGCCGACATA	GAGGAGAAGC	ATATGTACAA	TGAGCCGGTC	ACAACCCTCT	TTCACGACGT	TGAAGCTTCA	CAAACACACC	100
ACAGACGTGG	GTCAATACCA	TTGAAAGATG	AGAAAAGTAA	AGAATTGTAT	CCATTGCGCT	CTTTCCCGAC	GAGAGTAAAT	GGCGAGGATA	CGTTCTCTAT	200
GGAGGATGGC	ATAGGTGATG	AAGATGAAGG	AGAAGTACAG	AACGCTGAAG	TGA <mark>AGAGAGA</mark> 1	GCTTAAGCAA	AGAC <mark>ATAT</mark> TG 13	GTATGATTGC	CCTTGGTGGT	300
ACTATTGGTA	CAGGTCTTTT	CATTGGTTTA	TCCACACCTC	TGACCAACGC	2 CGGCCCAGTG	GGCGCTCTTA	6 TATCATATTT 2 2	ATTTATGGGT 1	TCTTTGGCAT 3	400
ATTCTGTCAC	GCAGTCCTTG	GGTGAAATGG	CTACATTCAT	CCCTGTTACA	TCCTCTTTCA	CAGTGTTCTC 1	ACAAAGATTC 1	CTTTCTCCAG	CATTTGGTGC	500
GGCCAATGGT	TACATGTATT	GGTTTTCTTG	GGCAATCACT	TTTGCCCTGG	AACTTAGTGT	AGTTGGCCAA	GTCATTCAAT	TTTGGACGTA	CAAAGTTCCA	600
CTGGCGGCAT	GGATTAGTAT	TTTTTGGGTA	ATTATCACAA	TAATGAACTT	GTTCCCTGTC	AAATATTACG	GTGAATTCGA	GTTCTGGGTC	GCTTCCATCA	700
AAGTTTTAGC 1	CATTATCGGG	TTTCTAATAT 1	ACTGTTTTTG	TATGGTTTGT	GGTGCTGGGG	TTACCGGCCC	AGTTGGATTC	CGTTATTGGA	GAAACCCAGG	800
I TGCCTGGGGT	CCAGGTATAA	TATCTAAGGA	TAAAAACGAA	GGGAGGTTCT	TAGGTTGGGT	TTCCTCTTTG	ATTAACGCTG	CCTTCACATT	TCAAGGTACT	900
GAACTAGTTG	GTATCACTGC	TGGTGAAGCT	GCAAACCCCA	GAAAATCCGT	TCCAAGAGCC	ATCAAAAAAG 5	TTGTTTTCCG	TATCTTAACC	TTCTACATTG	1000
GCTCTCTATT	ATTCATTGGA <mark>2</mark>	CTTTTAGTTC	CATACAATGA	СССТАААСТА	ACACAATCTA	CTTCCTACGT	TTCTACTTCT	CCCTTTATTA	TTGCTATTGA	1100
GAACTCTGGT	ACAAAGGTTT	TGCCACATAT 23 25	CTTCAACGCT	GTTATCTTAA	CAACCATTAT	TTCTGCCGCA	AATTCAAATA L	TTTACGTTGG	TTCCCGTATT <mark>1</mark>	1200
TTATTTGGTC	TATCAAAGAA	CAAGTTGGCT	CCTAAATTCC	TGTCAAGGAC	CACCAAAGGT	GGTGTTCCAT	ACATTGCAGT	TTTCGTTACT	GCTGCATTTG	1300
GCGCTTTGGC	TTACATGGAG	ACATCTACTG	GTGGTGACAA	AGTTTTCGAA	TGGCTATTAA	ATATCACTGG <u>1</u>	TGTTGCAGGC	TTTTTTGCAT 2	GGTTATTTAT	1400
CTCAATCTCG	CACATCAGAT	TTATGCAAGC	TTTGAAATAC	CGTGGCATCT	CTCGTGACGA	GTT <mark>AC</mark> CATTT	AAAGCTAAAT	TAATGCCCGG	CTTGGCTTAT	1500
TATGCGGCCA	CATTTATGAC	GATCATTATC	ATTATTCAAG	GTTTCACGGC	TTTTGCACCA	AAATTCAATG	GTGTTAGCTT	TGCTGCCGCC	TATATCTCTG	1600
TTTTCCTGTT	CTTAGCTGTT	TGGATCTTAT	TTCAATGCAT	ATTCAGATGC	AGATTTATTT	GGAAGATTGG	AGATGTCGAC	ATCGATTCCG	∠ ATAGAAGAGA	1700
CATTGAGGCA	ATTGTATGGG	AAGATCATGA	ACCAAAGACT	TTTTGGGACA	AATTTTGGAA	TGTTGTAGCA	TAG 1773			

Fig. S2. Position of (-2/-3nt) deletions along the *CAN1* ORF (1-1773) in wild-type (blue) and $rev3\Delta$ (red) strains. Mutants were isolated under high transcription conditions (*pTET-on* and *pGAL1-on*). Values reported under the *CAN1* sequence indicate the number of mutations at a specific sequence position (boxed in gray). Underlined numbers point to (-3nt) events.

Fig. S3. *CAN1* spontaneous mutagenesis under high transcription (*pGAL1-on*) in a strain expressing the catalytically dead mutant Top1p-Y727F. Strains bearing a *TOP1* deletion were complemented by expressing a chromosome-integrated version of *TOP1-WT* or *top1-Y727F* placed under the control of its natural promoter and compared with wild-type and noncomplemented *top1* Δ strain. Strains are described in *Materials and Methods* and Table S1.

Fig. S4. Steady state level of CAN1 mRNA under low (*pCAN1*) or high transcription (*pTET-on*) in wild-type, *top1*Δ, and *rev3*Δ strains. CAN1 mRNA was quantified by RT-PCR from YPD exponential growing cultures. S.E.M. is represented.

Fig. S5. Top1p-GFP impact on camptothecin sensitivity. The different strains were grown in liquid YPD for one day at 30 °C, diluted serially and spotted onto YPD plates containing DMSO 2% and 0, 5, and 20 μ g/mL camptothecin. For each strain, 50,000, 50,000, 500, 50, and 5 cells were spotted.

Fig. S6. Top1p-GFP enrichment on DNA after camptothecin exposure. Top1p-GFP recruitment is analyzed by ChIP in the *pGAL1-off* condition in 20 μg/mL camptothecin-treated cells or in untreated cells. Histograms show the average signal ratio between treated and untreated cells. Top1p-GFP relative enrichment is measured inside *CAN1* promoter region, inside *CAN1* gene (position 288 bp and 1201 bp), and inside *CAN1* downstream region.

Table S1. List of strains used in this study

Strain name	Relevant genotype	Reference
FF18733	Wild type (MATa, leu2-3–112, trp1–289, his7–2, ura3-52, lys1-1)	3
BS144	FF18733 with kanMX6/pTET-CAN1	This study
BS199	FF18733 with kanMX6/pGAL1-CAN1	This study
BA1	FF18733 with top1::kanMX6	4
BS114	FF18733 with can1::kanMX6	This study
BT46	BS199 with top1::kanMX6	This study
BT30	BS199 with <i>rev3::URA3</i>	This study
BT64	BS199 with tdp1::kanMX6	This study
BT180	BS199 with rad1::LEU2, mus81::kanMX6	This study
BS174	BS144 with top1::kanMX6	This study
BS149	BS144 with rev3::URA3	This study
AC31	FF18733 with TOP1-GFP kanMX6	This study
BT185	BS199 with TOP1-GFP kanMX6	This study
FF18744	FF18733 with srs2::LEU2	5
BT16	FF18733 with srs2::LEU2, TOP1-GFP kanMX6	This study
BT56	FF18733 with srs2::LEU2, top1::kanMX6	This study
BT200*	BS199 with top1::kanMX6, LEU2	This study
BT201*	BS199 with top1::kanMX6, LEU2 TOP1	This study
BT202*	BS199 with top1::kanMX6, LEU2 top1-Y727F	This study

*Construction of strains BT200, BT201, and BT202 is detailed in *Materials and Methods* section.

Table S2.	Can ^R mutation spectra of wild-type and <i>top1</i> strains under low transcription (<i>pCAN1</i>) and wild-type, 7	Гор1-GFP,	and <i>top1</i>
strains und	der high transcription (pGAL1-on)		

	Wild type (pCAN1)		top1∆ (pCAN1)		pGAL1-on		pGAL1-on Top1-GFP		pGAL1-on top1 Δ	
Mutation	Freq. (%)	Rate (10 ⁻⁷)	Freq. (%)	Rate (10 ⁻⁷)	Freq. (%)	Rate (10 ⁻⁷)	Freq. (%)	Rate (10 ⁻⁷)	Freq. (%)	Rate (10 ⁻⁷)
Total		2.2 (2.0–2.8) [†]		1.8 (1.3–2.4) ⁺		16.1 (13–19) [†]		14.0 (11–17) [†]		5.1 (3.5–5.9)†
Base pair	51/62 (83)	1.8	21/24 (88)	1.6	7/63 (11)	1.8	3/29 (10)	1.4	19/31 (61)	3.1
substitutions (BPS)										
BPS at GC	39/62 (63)	1.4	15/24 (63)	1.1	6/63 (10)	1.5	3/29 (10)	1.4	13/31 (42)	2.1
BPS at AT	12/62 (19)	0.4	6/24 (25)	0.5	1/63 (2)	0.3	0/29 (0)	<0.5	7/31 (23)	1.2
Indels	7/62 (11)	0.3	3/24 (13)	0.2	56/63 (89)	14.3	26/29 (90)	12.6	11/31 (35)	1.8
(-1/+1) nt	5/62 (8)	0.2	2/24 (8)	0.2	5/63 (8)	1.3	5/29 (17)	2.4	10/31 (32)	1.7
(–2/-3) nt	0/62 (0)	<0.04	0/24 (0)	<0.08	51/63 (81)	13.0	20/29 (69)	9.7	1/31 (3)	0.2
Other ins/del	2/62 (3)	0.1	1/24 (4)	0.1	0/63 (0)	<0.3	1/29 (3)	0.5	0/31 (0)	<0.2
Complex [‡]	4/62 (6)	0.1	0/24 (0)	<0.08	0/63 (0)	<0.3	0/29 (0)	<0.5	0/31 (0)	<0.2

*Mutation rates were determined by multiplying the proportion occurrence of specific mutation types by the overall mutation rate for that strain. When no events were observed, the rate was estimated assuming the occurrence of one event.

[†]Numbers inside brackets corresponds to 95% confidence intervals.

PNAS PNAS

[‡]Complex mutation refers to a mutation composed of more than one molecular event.