Supporting Online Material for

Lysophosphatidylcholine is Generated by Spontaneous Deacylation of Oxidized Phospholipids

Jaewoo Choi, Wujuan Zhang, Xiaodong Gu, Xi Chen, Li Hong, James M. Laird and Robert G. Salomon*

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA

All solvents were distilled under a nitrogen atmosphere prior to use, and all materials were obtained from Aldrich unless specified. Flash chromatography was performed using ACS grade solvents from Fisher Scientific (Hanover Park, IL). R_f values are quoted for TLC plates of thickness 0.25 mm from Whatman (Florham Park, NJ). Plates were visualized using iodine, dinitrophenylhydrazine, or phosphomolybdic acid reagent. Flash column chromatography was performed on 230-400 mesh silica gels supplied by Whatman and Sorbent Technologies Inc. (Atlanta, GA).

Time	CH ₃ OH	H ₂ O	Curve
(min)	(%)	(%)	
0	85	15	*
6	85	15	6
18	88	12	6
20	100	0	6
36	100	0	6
37	85	15	6
43	85	15	1

Table S1. Elution gradient for separating phospholipids by HPLC

lactone derivatives					
	AA-PAF, LA- PAF	HOHA-PC, HOOA-PC, HODA-PC, KOHA-PC oxPCs-furan	DNPH derivs		
Ion mode	positive	positive	negative		
Capillary (kV)	5.00	5.00	4.00		
Cone (V)	30	50	35		
Hex 1 (V)	30	50.0	30.0		
Aperture (V)	0.0	0.0	0.0		
Hex 2 (V)	1.0	1.0	1.0		
LM 1 resolution	15.0	15.0	15.0		
HM 1 resolution	15.0	15.0	15.0		
Ion energy 1	1.0	1.0	1.0		
LM 2 resolution	15.0	15.0	15.0		
HM 2 resolution	15.0	15.0	15.0		
Ion energy 2	2.0	2.0	2.0		

Table S2. Optimized parameters for the mass spectrometric detection of phospholipids and

Table S3. MRM transition ion pair and optimal collision energy for the analytes

Analytes	MRM (m/z)	Collision Energy (eV)	
Analytes	transition ion pair	Comsion Energy (CV)	
KOHA-PC	634 > 184	35	
AA-PAF	745 > 184	24	
LA-PAF	678 > 184	24	
LysoPAF	510 > 184	24	
HOHA-PC	636 > 184	40	
HOOA-PC	651 > 184	35	
HODA-PC	706 > 184	35	
oxPC-furan (2)	618 > 184	40	
oxPC-furan (3)	632 > 184	20	
oxPC-furan (7)	688 > 184	20	
LysoPC	496 > 184	30	
HOHA lactone-DNPH	319 > 152	18	
HOOA lactone-DNPH	333 > 152	14	
Cinnam-DNPH	311 > 181	24	

Figure S1

Figure S1. HPLC chromatogram of authentic HOHA-PC containing traces of lysoPC with (A) ELS or (B) UV detection.

Fig S2. MRM HPLC chromatogram of phospholipids

Fig S3. LC/ESI/MS/MS calibration curves of lysoPC, oxPC-furan, HOHA lactone-DNPH and HOOA lactone-DNPH and their precursors. Calibration curves for quantitative analyses of (A) and (B) were constructed by adding a 50 ng of internal standard DT-PC into various amounts of the indicated authentic synthetic phospholipids prior to extraction and LC/MS/MS analysis. In the case of (C), a constant amount of internal standard, cinnamaldehyde, was added before incubation procedure.