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Numerical model of local Ca2+ dynamics in SANC: 

Description and formulations 
 
We explored Ca2+ dynamics in submembrane space in rabbit SANC, in which all surface 
membrane currents are set to zero, thus approximating experimental conditions in depolarized, 
electrically inactive SANC. For continuity and simplicity of Ca dynamics, we model SANC as a 
torus with length 100 m (cell length) and radius 4 m. The model has three adjacent 
compartments: submembrane space, cytosol, and SR. Ca2+ is released from SR by Ca2+ release 
units (CRUs) and pumped into SR form cytosol by SERCA. The model uses a 2D array of 
diffusively coupled Ca2+ release units (CRUs) that stochastically release Ca2+ after a fixed 
refractory time, with a fixed rate of Ispark, for a fixed duration of time of 10 ms. Ca2+ is buffered 
by calmodulin in the submembrane space. Ca2+ diffusion occurs within the submembrane space, 
from the submembrane space to the cytosol, and within SR (main text Figure 3B). Thus, Ca 
cycling occur in the direction from SR to subspace via local Ca releases of CRUs, then Ca 
diffuses within subspace and simultaneously to cytosol, then Ca is pumped from cytosol to SR, 
Ca diffuses within SR and is released locally by CRUs, and so on (main text Fig.3B). The 
probability of Ca release from a given CRU is sensitive to local Ca. The CRUs are diffusively 
coupled by the following mechanism. When a neighboring CRU releases Ca, the neighboring 
local Ca levels increase via diffusion, thus affecting the probability of Ca release by adjacent 
CRUs.  Different CRUs are coupled only via Ca diffusion and the dependence of the probability 
of CRU firing function on local Ca2+. This is in accordance with the well known process of 
CICR (1). 
 
Submembrane space, cytosol, and SR  
We model the submembrane space of SANC as a very thin torus with the cell length Lcell = 100 
m and radius rcell=4 m (by 25.13 m cross section perimeter) and having a depth of 0.02 m 
as suggested for submembrane depth in previously numerical studies of rabbit SANC (2, 3). 
Since the torus depth is negligible the local Ca2+ concentration dynamics Casub are described in 
the model in two dimensions only, i.e. a function Casub(t,x,y) of x (position along cell length) and 
y (position along the perimeter of transverse cross-section area of the cell). The continuous 
submembrane space is modeled as a set of discrete adjacent elementary spaces/volumes with 
dimensions 0.33 x 0.35 m. Each elementary space (of total 285 x 72 = 20520, see main text 
Fig.3C) is described by its own “local” Ca2+ concentration. Thus our simulated Ca2+ signals 
Casub(t,x,y) are described by a dynamic array of 285 x 72  elements. The signals are illustrated 
simply in a rectangle, as shown in main text Fig.3C and Suppl. Movie #4.  

SR volume VSR was set as suggested for rabbit SANC elsewhere (2) to 0.0116 part of the 
cell volume Vcell = π rcell

2 Lcell = 5026.5482 m3.  In turn, the cytosol occupies almost the entire 
cell volume (except relatively small compartments of SR and submembrane space). Continuous 
cytosol and SR were modeled (sampled) similar to the submembrane space, so that each 
elementary submembrane space compartment has its adjacent cytosol compartment and 
elementary adjacent SR compartment. The respective elementary volumes of each compartment 
vsub , vcyt and vSR were estimated as follows: vsub = 0.33 x 0.35 x 0.02 = 0.00231 m3, vcyt = Vcell / 
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20520 = 0.24495849 m3, and vSR  = 0.0116 ·Vcell/20520 =0.0028415185 m3. The respective 
local cytosol and SR Ca2+ concentrations, Cacyt = Cacyt(t,x,y) and CaSR =CaSR(t,x,y), were also 
modeled as dynamic arrays with 285 x 72 elements, similar to [Ca2+] in submembrane space. The 
initial Ca2+ concentrations were set to 200 nM in the submembrane space, 150 nM in cytosol, 
and 0.9 mM in SR.  
 
Approximation of CRUs  
The CRUs are set in a square grid within the submembrane space (75 * 18 = 1350 CRUs, in x 
and y directions, respectively). The CRU-to-CRU distances are 1.33 m along x axis and 1.4 m 
along y axis. CRUs in our model are stochastic, i.e. they sometimes open and release Ca2+. The 
probability p of a given CRU at the location (x,y) to release Ca2+ is 0, if it opened recently or a 
power function of the local [Ca2+] in submembrane space Casub(t,x,y): 
 

p = ProbConst · (Casub/Cathresh)
ProbPower ·TimeTick (1a) 

 
where ProbConst = 5·10-4 ms/mM, Cathresh=150 · 10-6 mM (150 nM), ProbPower = 2.5.  
The time when the probability of CRU opening is 0 is called the refractory period. We fix the 
refractory period to be a constant 300 ms in our model. The non-linear dependence of opening 
probability on Ca2+ makes CRU interactions possible. When a CRU releases Ca2+, the probability 
of opening increases for nearby CRUs. In this study we model the time course of Ca2+ release to 
be rectangular, i.e. when a CRU opens it generates a constant current Ispark for some length of 
time, which is constant throughout the model. We call it spark duration and we set it equal to 10 
ms. We fix all the model parameters, and explore CRU interactions and related Ca2+ dynamics 
by simply varying Ispark from 0.5 pA to 2 pA. Thus, at any moment each CRU can be in one of 
three functional states: firing state, refractory state, and ready to fire state (see main text Fig.3C 
inset). The local Ca release flux jrel(t, x, y) in the submembrane space as a function of time and 
space can be summarized as follows: 

(1b) 
jrel  = 0 for any submembrane location (x,y) lacking CRU at any time t and  

for any submembrane location (x,y) with a CRU when the CRU is not firing  
jrel  = Ispark / (2Fvsub) for any submembrane location (x,y) with a CRU when the CRU is firing 

 
F is the Faraday constant and vsub is elementary subspace volume. Initial states for CRUs for 
simulations shown in man text Fig.4-6 were as follows: no CRU in firing state, but “ready to 
fire” state and refractory state were equally and randomly distributed among all CRUs. Ca2+ 
cycling quickly reaches a steady state in the model in about 100,000 model time ticks, i.e. in 5 
seconds. All LCR parameters in the main text Figs 4-6 and Supplemental movie 4 were 
evaluated at the steady state. To insure history independence, we also tested other initial 
conditions with all CRU in the refractory states or all CRUs in the ready to fire state. In either 
case the system comes to the same steady state in about 100,000 ticks. The fact that the system 
operates at steady state (i.e. without a drift) was also insured by comparison of average Ca levels 
in different 1.7 second periods in each Ca compartment, i.e. subspace, cytosol, and SR. In 
contrast, in simulations of the system transitions (main text Fig.8), all CRUs were initially set 
into the beginning of the refractory state, and the local Ca2+ dynamics were recorded and 
analyzed immediately after the simulation onset.  
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Local SR Ca2+ uptake (pumping) 
The local instant flux rate jSRCaP(t,x,y) of Ca2+ pumping by the local SR fragment with 
coordinates (x,y) from the adjacent elementary cytosol volume was adopted from Shannon et al. 
(4) as a function of respective local concentrations of Ca in cytosol, Cacyt(t,x,y) and in SR, 
CaSR(t,x,y): 

 

H

mr

SR

H

mf

cyt

H

mr

SR

H

mf

cyt

upSRCaP

K

Ca

K

Ca

K

Ca
V

K

Ca
V

Pj












































][][

1

maxmax

 (2) 

 

where Pup = 0.012 mM/ms,  Kmf = 0.000246 mM, Kmr = 1.7 mM, and H = 1.787.  

Approximation of Ca2+ diffusion in submembrane space using Green’s functions 
Ca2+ diffusion in the submembrane space is a fast process which requires special care. 
Conventionally used algorithms for modeling diffusion move some fraction of the Ca2+ in every 
space element into the immediately neighboring space elements at every time tick. This is too 
slow for our model. In one time tick of our model (0.05 ms) Ca2+ diffuses farther than the 
neighboring elementary spatial compartments. To find the spatial distribution of the Ca one tick 
later, we take the convolution of the current Ca2+ spatial distribution with the appropriate 
Green’s function. The Green’s function is the solution of the diffusion equation with delta 
function as the initial condition, which in this case is given explicitly by  
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The diffusion coefficient in the submembrane space (DiffCoeff) was set to 0.6 m2/ms. While 
Equation 3 includes theoretical normalization coefficients 1/(4·TimeTick·DiffCoeff), they are 
valid only for continuous integration with convolution radius  , i.e. for the entire 2D space. 
Since our model is discrete, we replace the continuous convolution with a sum and the 
continuous Green’s function with a discrete approximation. We use a convolution radius of 3 
elementary spaces (i.e. our Green’s matrix size is 7 x 7, as 3*2+1=7) and neglect more distant 
contributions (<10-5). In order to avoid losing Ca2+ in the system, we did not use the theoretical 
normalization coefficients but simply normalized our Green’s matrix to the sum of all its 
elements. In other words, the sum of all its elements becomes exactly 1 and our convolution 
summation simply redistributes Ca2+ with its total amount being preserved. Since the Green’s 
function matrix is time-independent, it is calculated only once at the beginning of each 
simulation.  



 5

 
 
Local Ca2+ diffusion to cytosol  
Local Ca2+ diffusion flux, jCa_dif_cyt(t,x,y) from a subspace element (x,y) into its adjacent cytosol 
element is described simply as previously suggested by Kurata et al. (2):  

jCa_dif_cyt = (Casub - Cacyt)/difCa (4) 
 
where Casub(t,x,y) and Cacyt (t,x,y) are instant local Ca2+ concentrations in the submembrane 
space and in the cytosol, respectively, and difCa  is a  diffusion time constant of 0.15 ms.  This 
time constant, which is longer than that used by Kurata, takes into account the possible 
recirculation of recently entered cytosolic Ca2+ just below the subspace into adjacent volume 
elements of the subspace.  The value of  difCa was determined by matching the amount and 
timing of arrival of released Ca2+ from one CRU to the next to the value it would have in a full 
3D diffusion model (calculated analytically). 
 
Local Intra-SR diffusion 
For our luminal diffusion we use the native Repast algorithm, with diffusion Constant 
(diffusionConstant) of 0.8. For a given elementary volume at each time tick, we get newValue = 
ownValue + diffusionConstant *(nghAvg - ownValue) where nghAvg is the weighted average of 
eight neighbors of the elementary SR volume, and own Value is the current value for the current 
elementary SR volume. For more details please see the repast web link: 
http://repast.sourceforge.net/api/uchicago/src/sim/space/Diffuse2D.html#diffuse() 
To evaluate the respective diffusion coefficient (described by the diffusionConstant of 0.8 in 
repast) in physical units, this repast diffusion can be compared with that approximated by 
Green’s matrix (described above). The repast diffusion is actually similar to diffusion described 
by a normalized smallest Green’s matrix (3 x 3, i.e. a center +eight its neighbors =9, similar to 
the repast algorithm) with DiffCoeff ~ 1 m2/ms, because the Green’s matrix element with a 
maximum value (in the matrix center) is calculated to be ~0.2 (i.e. 1-0.8 as in the repast 
diffusion). Thus, the Ca diffusion in SR in our model is faster than that in submembrane space 
(DiffCoeff=0.6 m2/ms) and does not limit release as Ca always present in SR during release. 
Since we simulated a CRU release simply by fixing release current Ispark for a fixed time of 10 
ms, described above, the quantitative concentration of Ca2+ in the SR does not play an important 
role in regulating release in the model, but only serves an “accounting” function in overall Ca2+ 
balance. The fact that intra-SR diffusion indeed does not limit Ca2+ SR release in rabbit cardiac 
cells has been shown experimentally by Shannon et al. 2003 (5).  
 
Numerical integration  
Our numerical model was implemented based on the cross-platform SPARK (Simple Platform 
for Agent-based Representation of Knowledge) that is free software for multi-scale agent-
based modeling (ABM) developed at University of Pittsburgh (see details at the website 
http://www.pitt.edu/~cirm/spark/). We applied the Java Parallel Arrays library (jsr166y) to 
implement parallelization on a single multi-core computer. This library implements the Open  
Multi-Processing (OpenMP) API, which supports multi-platform, shared memory, and 
multiprocessing programming. Both agent actions and data layer computations were parallelized. 
To implement parallelized SPARK ABM's on a cluster, we divided the space into smaller parts 
and assigned each part to a particular machine in a cluster. Because agents occupy a particular 
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part of the space, we distributed the agents among machines in a spatial manner. For cluster 
synchronization, we used the P2P-MPI implementation of the Message Passing Interface (MPI) 
protocol. Our model simulations were performed by 6 Hewlett Packard xw8400 workstation 
computers, each of which having eight processors (two Quad-Core Intel® Xeon® 5355 
processors 2.66 GHz). The model was integrated with a constant time tick of 0.05 ms. We also 
tested our model with a smaller time tick of 0.02. The phase transition between sparks and waves 
is only slightly (insignificantly) shifted towards larger Ispark. That is also expected because Ca2+ 
buffering in subspace and diffusion into cytosol becomes better approximated and stronger, so 
that CICR becomes slightly less pronounced at each particular Ispark.  Since the dynamics of the 
CRU itself are modeled phenomenalogically, the slight loss of precision due to the longer time-
tick is not important for purposes of this study. 
 
Summary of differential equations for Ca2+ dynamics in the model  
 

subsub
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t

Cacyt




= jCa_dif_cyt   –  jSRCaP  (7) 

SRSR
SR CaD

t

Ca 2



 – jrel ·

SR

sub

v

v
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 fCMs/ t =  kfCM ·Casub·(1  – fCMs) –  kbCM · fCMs (9) 
 

F is the Faraday constant and vsub and vSR are elementary subspace and SR volumes, 
respecctively.  The Equation 9 describes local Ca2+ buffering by calmodulin in submembrane 
space. Local fractional occupancy of calmodulin by Ca2+ in submembrane space, variable 
fCMs(t,x,y), was adopted from Kurata et al. model (2), where kfCM=227.7 mM-1· ms-1 is Ca2+ 
association constant for calmodulin; kbCM=0.542 ms-1: Ca2+ dissociation constant for calmodulin; 
total calmodulin concentration [CM]tot was set to 0.045 mM. All initial fCMs values were set to 
0.09 as suggested in (3). For accuracy, we used 3 additional steps within each time tick to 
integrate Ca2+ buffering by calmodulin in Equation 6. Also, for each time tick diffusion from 
submembrane space location (x,y) to adjacent cytosol location (jCa_dif_cyt in Equations 6 and 7) 
was solved simply and explicitly as an exponential with the time constant difCa (see Equation 4).  
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