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Critical fibril concentration (CFC)
The concentration of peptides in the fibril state is given by the final term in Eq. 7
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n=n0

ncn1g
nL (S1)
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The sum in Eq. S1 converges when the argument is less than unity, therefore the monomer concentration
must satisfy c1 < g−L if the bulk concentration is to remain finite. This radius of convergence defines a
concentration

c
(CFC)
1 ∼ g−L, (S4)

which may be interpreted as the CFC for the fibril solution and is plotted as the monomer-fibril boundary in
Fig. 4. For c1 much less than this value the concentration of monomers in the fibril state cfibril is strongly
suppressed by the factor γℓp(c1gL)n0 . However, as c1 approaches g−L Eq. S1 diverges. In this regime we
can write c1gL = 1− δ and the fibril concentration becomes

cfibril ≃ γℓp
(1− n0δ)(1 + n0δ − δ)

δ2
(S5)

= γℓp
c1g

L +O(δ2)

(1− c1gL)2
, (S6)

which demonstrates that cfibril is insensitive to the lower limit n0.
Note that our definition for the CFC differs from that given in reference [1].
Critical oligomer concentration (COC)
Here, we calculate the concentration of oligomers both in the presence and absence of fibrils. In the

presence of fibrils we can approximate the concentration of peptides in the oligomer state, coligo, by using
the CFC in the second term of Eq. 7 since the monomer concentration varies little in the vicinity of the fibril
CFC

coligo ∼ Ng−LNeχLN . (S7)
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This expression is only valid provided eχ < g. If this condition is not satisfied, then Eq. 2 is a monotonically
increasing function of m meaning the oligomer state has a lower free energy per peptide than a fibril of any
length. In this case no fibrils will be formed, and the solution will be an equilibrium mixture of oligomers
and monomers. We define the COC to be the concentration where the oligomer and monomer states have
equal occupancies. Using the appropriate terms from Eq. 7 we find the COC given by

c
(COC)
1 =

(
e−χNL

N

)1/(N−1)

. (S8)

This expression is plotted as the monomer-oligomer boundary in Fig. 4.
Fibril-oligomer boundary
The boundary between the fibril and oligomer phases is defined, for points suitably removed from the

monomer phase, by the condition cfibril = coligo ≃ c0/2. Using Eqs. S6 and S7 we have

c0/2 = γℓp
c1g

L

(1− c1gL)2
(S9)

c0/2 = NcN1 e
χNL. (S10)

Eq. S9 yields a recursive formula for c1, which to lowest order gives

c1 ≃ g−L(1−
√

2γℓp/c0) (S11)

which can be combined with Eq. S10 to yield a condition for the phase boundary

ln g
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)
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) . (S12)

This expression is plotted with long dashes in Fig. 4.
Average fibril length
The critical concentrations for fibril and oligomer formation, c(CFC)

1 and c(COC)
1 are notably lacking a

dependence on the nucleation parameter γ. While this parameter has little effect on the relative stability
of the fibril and oligomer phases, we expect that it will play a large role in determining the equilibrium
lengths of mature fibrils. To see this we consider a system that is deep within the regime where fibrils are
the dominant species so that c0 ≃ cfibril. Using Eq. S6 we find

c1 ≃ g−L(1−
√
γℓp/c0). (S13)

The jth moment of the fibril length distribution is given by
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The average length is given by the first moment j = 1

⟨ℓ⟩ = n0 +
c1g

L

1− c1gL
(S16)

∼ c
1/2
0 γ−ℓp/2 + const, (S17)
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where Eq. S13 has been used to extract the scaling behavior.
The lack of a dependence on g in this scaling relation is a result of an approximation based on c0 ≫

c
(CFC)
1 . When this assumption is satisfied the large majority of protein is in the fibril state, and the problem

of determining the fibril lengths is reduced to a question of fibril breakage statistics. Since each breakage
incurs a statistical penalty γℓp, the functional form of Eq. S17 is not surprising (the numerical factor in
the exponent is a result of the degeneracy of breakage points). For systems near the onset of fibrillization
c0 ≃ c

(CFC)
1 the fibril lengths depend sensitively on g and Eq. S14 must be used to model the lengths.

Denaturants
Denaturants destabilize the folded states of proteins by weakening hydrophobic interactions and weak-

ening peptide-peptide H-bonds relative to peptide-solvent H-bonds [2]. To capture the effect of denaturants
on the interaction free energy quantities g and γ, we use

kT ln gc = kT (ln g − a0cd)

kT ln γc = kT (ln γ + a0cd), (S18)

where gc and γc are the propagation parameters in the presence of denaturant, cd is the denaturant concen-
tration and a0 is a constant describing the destabilizing effect of the osmolyte on the fibril. This form reflects
the fact that the denaturant weakens the H-bonds captured in g, but also reduces the fibril end free energy
− ln γ, which arises largely from unsatisfied H-bonds.

Using Eqs. S4, S8, and S18 we can compute how the critical concentrations will shift as a function of
denaturant concentration. At the onset of fibrillization we have c0 = c

(CFC)
1 , so from Eqs. S4 and S18 we

have

ln c1 = −L ln gc (S19)

= −L(ln g − a0cd), (S20)

which can be solved for cd to give the phase boundary

cd =
ln c0 + L ln g

La0
. (S21)

Similarly, for the oligomer state we write

χc = χ− a1cd (S22)

where a1 has been introduced to reflect the fact that since the oligomers are more dependent on hydrophobic
interactions and less dependent on H-bonds for stability, and therefore, the destabilization coefficient will,
in general, be different. The onset of oligomerization may be determined from Eq. S8

c0 =

(
e−NL(χ−a1cd)

N

)1/(N−1)

, (S23)

which can be rearranged to yield

cd =
1

a1

(
χ+

(N − 1) ln c0 + lnN

NL

)
. (S24)
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The fibril-oligomer boundary can be derived from Eqs. S9 and S10

ln c0/2N = NL(χ− a1cd)−NL(ln g − a0cd), (S25)

where we have dropped the correction term in Eq. S9. In Fig. 8 we take a1 = a0/3 reflecting our expectation
that the hydrophobic interactions stabilizing the oligomer are less affected by the presence of denaturant than
the H-bonds stabilizing the fibril [3, 4]. However, the particular choice of a0/3 is for illustration purposes.
With this approximation for a1 Eq. S25 becomes

cd =
3

2a0NL

(
ln

c0
2N

−NL(χ+ ln g)
)
. (S26)

Based on denaturation studies, we expect that a0 = 0.022M−1 for urea and 0.042 for guanidinium
[4]. Using our estimates of L ln g = 13.1 and ℓp ln γ = −15.5 (in the absence of urea) for Aβ from our
previous analysis of fraction fibril as a function of concentration (Fig. 5) we can predict the fibril fraction as
a function of urea using Eq. S18 without a fit parameter. Our prediction is compared with the experimental
data in Table 1.

Electrostatics
To compute Fes we approximate the fibril as a smooth cylinder of radius R and uniform charge density.

The linear charge density may be computed by noting that the average charge per β-strand is q/ns and there
are 2p strands per layer in the fibril.

To determine the peptide charge as a function of pH, we use

q =

acidic residues∑
i

− 10pH−pKai

1 + 10pH−pKai
+

basic residues∑
i

+
10pKai−pH

1 + 10pKai−pH
, (S27)

where the pKas of the amino acids are taken from Ref. [5]. So, the charge density on each peptide-molecule
cylinder is ρ = 2qp/nsa, where a = 4.7 Å is the spacing between β-strands.

We then solve for the electrostatic potential ψ using the Poisson-Boltzmann equation

ϵ
1

r

∂

∂r
r
∂ψ

∂r
= −e(c+ − c−), (S28)

where the ion concentrations are c± = cse
∓eψ/kT . In the linearized (Debye-Huckel) approximation, Eq.

S28 has the solution
ψ(r) =

2q

2πRaϵκK1(κR)
K0(κr), (S29)

however, we use the numerical solution of the nonlinear Eq. S28 as the dimensionless potential eψ/kT can
reach values in excess of unity at the low salt concentrations we consider. Here κ−1 is the Debye length,
defined via κ2 ≡ 2e2cs/ (ϵkBT ). At infinite dilution the appropriate boundary conditions are ψ′(R) =

−ρ/2πϵR and ψ(∞) = 0, but for the purposes of the numerical solver we employ the outer boundary
condition ψ′(d) = 0 corresponding to a solution of fibrils separated by an average distance 2d. We take
d = R+ 5κ−1 (see Fig. S1). For d≫ κ−1 the influence of the outer boundary condition will be minimal.

Once we have computed ψ, we get the electrostatic free energy density of the peptide cylinder as [6]

f =
ϵ

2

(
dψ

dr

)2

+ kT (c+ ln(c+/cs) + c− ln(c−/cs)− c+ − c− + 2cs). (S30)
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Figure S1: Cylindrical fibril geometry used to solve Eq. S28. Fibrils are taken as cylinders of radius R
separated by a distance 2d. Eq. S28 is solved from surface of the reference fibril (center), out to a distance
d (outer cylinder) with the boundary condition ψ′(d) = 0 reflecting the symmetry of the electric potential
between the cylinders.

The first term in Eq. S30 is the electrostatic energy stored in the electric field, and the remaining terms
account for the translational entropy of the ions in the screening layer. We then compute the free energy per
peptide using

∆Fes = 2π
nsa

2p

∫ ∞

R
f(r)rdr (S31)

where r is the radial coordinate perpendicular to the axis of the cylinder.
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