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METHODS: MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed on a Linux workstation (Dell Precision T7400) with in-house
FORTRAN code programs using the NAG f95 compiler (Numerical Algorithms Groups, Oxford, UK),
as described before (1–4). The membrane was represented by a 100 × 100 triangular lattice with
skew-periodic boundary conditions (5). Each lattice site represents one cholesterol molecule or one
phospholipid molecule. The latter may exist in one of three possible states: solid, liquid-ordered (Lo),
and liquid-disordered (Ld).

Equilibration of the lattice was achieved by two processes. The first process is site exchange using
a variation on the method of Kawasaki (6). Rather than exchanging only nearest-neighbors, the two
sites for which a switch is attempted are both picked randomly from anywhere in the lattice. This
ensures a much faster equilibration of the system. If only exchange of nearest neighbors were allowed,
after small domains form a large fraction of the attempted moves leads to no change, because there is
a high probability that two neighbors be identical. The second process consists of transitions between
the different states of the phospholipids: Ld ⇀↽ solid, Ld ⇀↽ Lo, and Lo ⇀↽ solid.

The algorithm is as follows. A Monte Carlo cycle (mcc) is defined as a number of attempted moves
equal to the number of lattice sites. For each attempted move, a site on the lattice is picked at random.
The random number generator ran2 of Press et al. (7) was used. The decision about which move to
try—exchange or state change—is also random. The probability (p) of each move is determined by
the Gibbs energy change (δG) in the process, p = exp(−δG/RT ), where R is the gas constant and T
is temperature. Acceptance of the move is based on the algorithm of Metropolis et al. (8): if p ≥ 1 the
move is accepted; if p < 1, a random number (Ran# ∈ ]0,1[) is generated, and the move is accepted if
p > Ran#. The calculation of δG includes changes in enthalpy (∆H) of the phospholipid, if a change
of state occurs, as well as changes in lipid-lipid interactions between each site and its neighbors, in the
final and initial configurations. The lipid-lipid interactions are represented by unlike nearest-neighbor
interaction Gibbs energies, or interaction parameters for short, ωAB, given by

ωAB = gAB −
1

2
(gAA + gBB) , (1)

where gAA and gBB are the Gibbs energies of interaction between two A or two B molecules, and gAB

is the Gibbs energy of interaction between one A and one B molecule, which may be cholesterol or
phospholipid, in which case ωAB varies depending on the phospholipid state.

Consider for example a system with only two states, A and B, with an unlike interaction ωAB, and
a transition A → B between them, characterized by enthalpy and entropy differences ∆H and ∆S,
where ∆S = ∆H/Tm and Tm is the transition temperature. The total excess Gibbs energy is given by

∆G = nB(∆H − T∆S) + nABωAB, (2)

where nB is the number of B lipids and nAB is the number of AB contacts (3). Thus, at each step,
the Gibbs energy change is

δG = δnB(∆H − T∆S) + δnABωAB, (3)

where δnB and δnAB are the changes in the number of state B molecules and unlike AB contacts
(3). A simple example where lipids exchange positions, but no change of state occurs, is illustrated in
Fig. 1. In this case, counting only the interactions of the lipids that exchange sites,

δG = 9ωAB − 3ωAB = 6ωAB. (4)
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Figure 1: Example of exchange of position between two lipids.

The enthalpy of the lattice is determined by ∆H between the different phospholipid states, with
solid as reference, and by differences in the mutual interactions of lipid neighbors. In the calculation of
the enthalpy ωAB were used as enthalpies, except in the case of Lo/Chol interaction, which is the only
one for which a an experimental temperature-dependence is available, corresponding to ∆HAB = −2.1
kcal/mol (9). This approximation, however, introduces very little error in the calculation because the
direct contribution of the ωAB to the heat capacity is very small. Their essential effect is in determining
the cooperativity of the transition, not the heat. If the transition is narrow, the results are actually
identical whether ωAB are assumed exclusively enthalpic or entropic (3). ∆H (or the energy) converges
rapidly, but it is not the best indicator of convergence of the calculation.

The excess heat capacity function ∆Cp was calculated through the fluctuation-dissipation theorem
(10),

Cp =
〈H2〉 − 〈H〉2

RT 2
, (5)

where 〈H2〉 − 〈H〉2 denotes the fluctuations in enthalpy. A second derivative of the free energy and
a correlation function, ∆Cp is a very good indicator of whether the Monte Carlo simulation has been
carried for sufficient time to ensure that the calculated values correspond to equilibrium. Thus, an
approximately constant value of ∆Cp was the criterion adopted to set the simulation length. In
addition, simulations started from different initial states led to the same results.

The values of the parameters used are given in Table 1 in the main paper, which is reproduced
here for convenience.

Table 1: Lipid-lipid interaction parameters, transition enthalpies, and transition entropies used in the
Monte Carlo simulations.

Lipid pair ωAB ∆H ∆S
(A/B) (cal/mol) (kcal/mol) (cal/mol/K)

solid/Ld +360 8.7 27.65
solid/Lo +330 3.5 10.15
Lo/Ld +330 5.2 17.5
Chol/Ld +20 – –
Chol/Lo −340a – –
Chol/solid +350 – –

aValue at 20oC. This parameter is temperature-dependent, with ωAB = −2120 + 6.07T cal/mol (T in K).
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Figure 2: The excess heat capacity, ∆Cp, as a
function of the number of Monte Carlo cycles
(mcc). (A) Pure DPPC at Tm for lattices of
different sizes: 20× 20 (blue), 30× 30 (cyan),
100× 100 (black), 200× 200 (red), and 300×
300 (green). (B) DPPC/Chol 70:30 at 22oC
for the same set of lattices (same colors).

To verify that the size of the lattice (104 sites) is not a limitation, and that the results apply
to larger systems, a few simulations were performed on 200 × 200 and 300 × 300 lattices, as done
previously in the study of ternary mixtures (2). Indeed, there are no significant differences between
100 × 100, 200 × 200, and 300 × 300 lattices. For all intents and purposes of this study, the results
are identical. Simulations in small lattices (20 × 20 and 30 × 30) were also performed; the size does
matter if the systems are this small.

The simulations were typically run for a pre-equilibration period of ≈ 104 mcc, followed by 5×105

to 106 mcc to acquire data. (Occasional longer runs were performed that showed no variation in
any property beyond that point, even after a period 10× longer.) In DPPC/Chol mixtures this was
sufficient to ensure that equilibrium values were obtained. However, in pure DPPC close to Tm the
fluctuations are very large and, to be sure, the simulations were run for 5× 106 cycles, though this is
not strictly necessary. Fig. 2 shows the evolution of ∆Cp as a function of “time” (number of mcc) for
pure DPPC (A) and DPPC/Chol 70:30 (B), for several lattice sizes. It is apparent that pure DPPC at
Tm requires longer runs than DPPC/Chol 70:30 to obtain the equilibrium values. It is also apparent
that the small lattices (20×20 (blue) and 30×30 (cyan)) behave quite differently from the large ones,
but there is no significant difference between 100× 100 (black), 200× 200 (red), and 300× 300 (green)
lattices.

Snapshots of DPPC for various lattice sizes are shown in Fig. 3. Very large fluctuations in the
content of solid (white) and Ld (black) lipids are observed in small lattices (20 × 20 and 30 × 30) at
different simulation times, but for a 100× 100 lattice the snapshots look essentially identical to those
of 200×200 lattice. The picture is identical for a 300×300 lattice (not shown). Fig. 4 shows snapshots
for the same set of lattices in DPPC/Chol 70:30. Again, it is clear that 20 × 20 and 30 × 30 lattices
do not yield the same results as the large lattices. But a 100 × 100 lattice yields results identical to
those obtained with a 200× 200 lattice and with a 300× 300 lattice (not shown).
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Figure 3: Snapshots of pure DPPC at Tm (41.5oC) for lattices of different sizes, (A,B) 20× 20, (C,D)
30 × 30, (E,F) 100 × 100 (all at 2.5 × 106 and 5 × 106 mcc), and (G) 200 × 200 sites, (1 × 106 mcc).
Black is Ld, green is Lo, and white is solid.
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Figure 4: Snapshots of DPPC/Chol 70:30 at 22oC for lattices of different sizes, (A) 20 × 20 and (B)
30× 30 (at 5× 106 mcc), (C,D) 100× 100 (5× 105 and 5× 106 mcc), and (E) 200× 200 sites (1× 106

mcc). Black is Ld, green is Lo, white is solid, and red is Chol.
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