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Supplement 

Details of the mathematical model 

The mathematical model aims to examine the overall interstitial fluid pressure and interstitial 

fluid velocity profile throughout the entire tumor (1).  The tumor is considered spherical.  The 

length scales of the pressure and concentration profiles are assumed to be on the order of the 

tumor radius.  Detailed structures of blood vessels, cells, and the interstitial matrix are not 

considered explicitly.  The model assumes a continuous, spatially distributed source throughout 

the tumor.  It also assumes that the tumor growth rate is slow compared to transport rates, and 

thus all transport parameters are independent of time. 

First, the transport of fluid in the tumor interstitium is described by Darcy’s law.   

ui = −K dPi

dr
   (1) 

where K is the hydraulic permeability of the interstitium (cm2/mmHg/s) and ui is the fluid 

velocity (cm/s).  This equation is then combined with the continuity equation for steady-state 

incompressible flow: 

∇ ⋅ ui = φv (r)    (2) 

where )(rvφ  is the fluid source term (s-1) given by the Starling’s Law: 

))(()( ivivp
v

v PP
V
SL

V
SJr ππσφ −−−==    (3) 

where Jv is the fluid flux across the vascular wall (cm/s), S/V is the surface area of vessel wall 

per unit volume of tissue (cm-1), Lp is the hydraulic permeability of the vessel wall 

(cm/mmHg/s).  Pv is the microvascular pressure (MVP), and Pi is the interstitial fluid pressure 

(IFP).  The hydrostatic pressure gradient (Pv - Pi) is countered by the oncotic pressure gradient 

(the difference between πv, plasma oncotic pressure and πi, interstitial oncotic pressure), and the 

reflection coefficient, σ, determines the effectiveness of the oncotic pressure gradient to induce 

water convection.   Lp and σ depend on the properties of solute (i.e. size, charge, configuration) 
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and physiological properties of the vascular wall (pore size, charge).  Pv, Pi, and the two oncotic 

pressures also depend on the properties of the tissue, blood and lymphatic vasculature.   

This equation implies that the fluid source term is uniformly distributed throughout the tumors.  

This model assumes that there is no functional lymphatic vasculature inside the tumor to drain 

interstitial fluid (2, 3).  

The equation for Darcy’s Law is then combined with the continuity equation to give: 

−∇ ⋅ K∇Pi = φv (r)  (4) 

Assuming all parameters except for Pi are constant, the equation can be simplified to: 

∇2Pi = −
α 2

R2 Pv − Pi −σ π v − π i( )[ ], (5) 

where  KV
SL

R p=α
.  

There is a no flux boundary condition at the center of the tumor due to symmetry: 

0
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At the surface of the tumor, two boundary conditions were used for this analysis.  For tumors 

embedded in a fluid, referred to as isolated tumor case here (Case I), the boundary condition is: 

 0=
=RriP  

When the tumor is embedded in tissue (Case II), i.e. the continuity of pressure and interstitial 

velocity hold: 
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 (6) 

where R- and R+ represent the tumor-host boundary at the tumor and host side, respectively.  KT 

and KN are the hydraulic conductivities of tumor and normal tissue, respectively.  The remaining 
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boundary condition for Case II is that Pi becomes 0 as R approaches infinity, assuming that blood 

vessels and lymphatic vessels in normal tissue eventually drain all excess interstitial fluid. 

Analytical Solutions 

The differential equations using the appropriate boundary conditions, pressure and interstitial 

velocity profiles can be solved analytically for tumors growing as an isolated mass in a body 

cavity (Case I) or embedded in a host organ (Case II, Figure 1). Equation (5) is arranged into the 

form of a Bessel equation for each tissue (designated by the subscript j); the solution is then a 

sum of modified Bessel functions: 
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However, Bessel functions of an order which is half of an odd integer may be transformed into 

elementary functions. In the present case, I− 1
2
(x) =

2
πx

cosh x( ) and I1
2
(x) =

2
πx

sinh x( ). 

Further details of the derivation can be found in reference (4).  The relative interstitial fluid 

pressure ( ˆ P ) and relative interstitial fluid velocity ( ˆ u i ) as a function of relative radial position 

( ˆ r ) are then given in terms of a single parameter α :  

Case I: Tumor surrounded by bodily fluid: 

ˆ P = Pi

Pv −σ π v − π i( )
=1−

1
ˆ r 

sinh(αˆ r )
sinh(α)

 (8) 

ˆ u i =
uiR

KT Pe( )
=

1
ˆ r 2

αˆ r cosh(αˆ r ) − sinh(αˆ r )
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Here, ˆ P is the interstitial pressure relative to the “effective pressure” Pe defined as 

Pe = Pv −σ π v − π i( ). In tumors, π v ≈ π i  so that Pe  is approximately the same as Pv  and therefore, 

ˆ P is the interstitial pressure relative to the vascular pressure. ˆ r , the relative radius, is simply r/R, 

and the relative interstitial velocity, ˆ u i , is the local velocity relative to an effective, or average, 

bulk velocity at the margin, calculated as though the IFP were uniform throughout the tumor: 
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K Pe − P∞( )
R

 (here we assume that P∞ , the pressure far from the tumor, is equal to zero). α  is 

defined as R
LpS
KV

, where Lp and K are the hydraulic conductivities of the vessel wall and tumor 

interstitium, respectively, S/V is the ratio of vessel surface area to tumor volume and R is the 

tumor radius.  

Case II: Tumor surrounded by normal tissue: 

For a tumor embedded within normal tissue, the relative IFP is given by  

ˆ P =1−
(1+ αN )

ˆ r 
sinh(αT ˆ r )

φ + θ( )
; ˆ r ≤ 1 (10) 

ˆ P = θ ⋅ eαN (1− ˆ r )

ˆ r φ + θ( )
; ˆ r > 1 (11) 

where, θ = ˆ K [αT ⋅ cosh(αT ) − sinh(αT )] and  φ = (1+ αN ) ⋅ sinh(αT ); The relative hydraulic 

permeability, ˆ K  is given by KT KN . Where the subscripts T and N refer to tumor and normal 

tissue, respectively. 

 

The relative velocity of the fluid through the interstitium is  

 

ˆ u i =
1+ αN( ) ˆ r αT cosh αT ˆ r ( )− sinh αT ˆ r ( )[ ]

φ + θ( )ˆ r 2
     ˆ r ≤ 1 (12) 

 

ˆ u i =
θ 1+ ˆ r αN( )eαN 1− ˆ r ( )

φ + θ( )ˆ r 2
    ˆ r > 1  (13) 

Therefore, at the tumor boundary (  ˆ r = 1), 
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ˆ P = θ
φ + θ

     (14) 

ˆ u i =
(1+ αN )θ

φ + θ( )
      (15) 

 

Limitations of the Current Model: 

While the model used here provides considerable insight into the mechanism of the reduction of 

IFP, it has certain assumptions and limitations.  First of all, the tumor is considered to be 

homogeneous.  In reality, a tumor is highly heterogeneous, and there can be avascular and 

necrotic regions.  A tumor can also have a variable growth rate and interstitial components.  

These can lead to variable transport properties throughout the tumor.  The absence of functional 

blood vessels in necrotic regions also provide a less uniform fluid source, thus affecting the shape 

of interstitial fluid pressure and velocity profiles.   

The pressure distribution around individual blood vessels is also not considered in this model.  

This may lead to an overestimation of fluid filtration because vessel-vessel interaction can lead to 

lower pressure gradients around the vessels due to the opposing filtration driving force.   

Several of these assumptions were relaxed in subsequent models by Baxter and Jain (5-7), but did 

not change the overall conclusions. Hence we have not explicitly relaxed these assumptions in 

this study.  
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