#### **SUPPLEMENTARY INFORMATION**

#### The HIF pathway regulates oxygen sensing in the simplest animal,

#### Trichoplax adhaerens

Christoph Loenarz, Mathew L. Coleman, Anna Boleininger, Bernd Schierwater, Peter

W. H. Holland, Peter J. Ratcliffe and Christopher J. Schofield

#### **1. Supplemental Experimental Procedures**

#### 2. Supplementary Data

- 2.1. Supplementary Figures (4)
- 2.2. Supplementary Tables (3)
- **3.** Supplementary References

#### **1. Supplemental Experimental Procedures**

#### RNA isolation and RT-q-PCR analysis (continued)

Melting curve analyses were performed after PCR amplifications; primer pairs giving non-uniform amplification products or  $C_t$  values very different to those of control genes were not investigated further. Primers were designed to bridge exon-intron boundaries in highly conserved gene regions, wherever possible.

| Entry | Target gene | Sequence                   | Direction |
|-------|-------------|----------------------------|-----------|
| 1     | taACTB      | GGGATGATATGGAAAAGATCTGG    | Forward   |
| 2     | taACTB      | GCCGGAATCAAGAACGATAC       | Reverse   |
| 3     | taCDO       | AAGGCCAAGGGAGTGGTATT       | Forward   |
| 4     | taCDO       | TTCTCCCTCAGGCCATTCTA       | Reverse   |
| 5     | taPGK       | GGAATGGACCTCCTGGTGTA       | Forward   |
| 6     | taPGK       | GGCAACTCCCGGTAGATTTT       | Reverse   |
| 7     | taPHD       | GAACAGCCAGGACTGTGGAG       | Forward   |
| 8     | taPHD       | TCGTTCCTTCTCGTCGAAAT       | Reverse   |
| 9     | taPLOD      | GATCATGAGGGTGGAGGTTG       | Forward   |
| 10    | taPLOD      | CAAGGATCAATAAACGAGACCA     | Reverse   |
| 11    | talDE       | TCAATGAAGGAACACTTGGAA      | Forward   |
| 12    | talDE       | CGCTTAGGAGCGTCTTTTTC       | Reverse   |
| 13    | taALDO      | GGCGATGTGTCCTCAAGATT       | Forward   |
| 14    | taALDO      | TAAGTCGCCGCCAGTACTCT       | Reverse   |
| 15    | taPDK       | TGAGAGCAACGGTTGAAAAA       | Forward   |
| 16    | taPDK       | CCTCTGTCAACAACTCTAATCACTAT | Reverse   |
| 17    | taHIFα      | CGCTTCGGTTGTCTGTGATA       | Forward   |
| 18    | taHIFα      | CGCGTTATAATCGCATAGCA       | Reverse   |
| 19    | taHIFα      | GCTGTGTTATAGGGACATCAAGTG   | Forward   |
| 20    | taHIFα      | CCCTTCATACGGGATTCTGA       | Reverse   |
| 21    | taHIFα      | TTGAGCAGGACATCAAGTGG       | Forward   |
| 22    | taHIFα      | ATTCCACGTCGGATTCTGAT       | Reverse   |

Table. Oligonucleotide primers used in RT-q-PCR experiments.

#### Human cell culture, transfections, and immunoblots (full method)

Cultures of HEK 293T cells were maintained in Dulbecco's modified Eagle's Medium supplemented with 10% fetal calf serum, 2 mM L-glutamine, 50 IU/ml penicillin G, and 50 µg/ml streptomycin. Cells were either grown in normoxia (21% O<sub>2</sub> / 5% CO<sub>2</sub>) or moderate hypoxia (6% O<sub>2</sub> / 5% CO<sub>2</sub> for 4 hours) using an Invivo<sub>2</sub> hypoxic workstation (Ruskin Technologies, UK). Plasmid transfections were performed in HEK 293T cells with FuGENE 6 (Roche) according to the manufacturer's instructions. HEK 293T cells were transfected with pEF6 HA-taPHD plasmid plus 50 nM control (Drosophila HIFa, dHIF) or PHD2 siRNA oligonucleotide using DharmaFECT Duo (Fisher Scientific) according to the manufacturer's instructions. Control and PHD2 siRNA oligonucleotide sequences were as reported (Appelhoff et al, 2004). 48 h post-treatment, cells were lyzed (20 mM Tris-HCl (pH 7.4), 100 mM NaCl, 5 mM MgCl<sub>2</sub>, 0.5% (v/v) Igepal CA-630, 1x Complete protease inhibitor mixture (Roche)); proteins were analyzed by immunoblotting following SDS-PAGE separation. HRP-conjugated anti-HA antibody (Roche) was used at 1:2,000. HRP-conjugated anti-β-actin antibody (Sigma) was used at 1:25,000. Mouse anti-HIF1 $\alpha$  antibody (Transduction Labs) was used at 1:1,000, mouse anti-PHD2 antibody (Appelhoff et al, 2004) was used at 1:50, and goat antimouse HRP conjugated secondary antibody (Dako) at 1:2,000.

#### **Enzymatic assay conditions**

Assays with recombinant enzymes / substrates utilized similar conditions to those described (Hewitson *et al*, 2007), except without the 1-[<sup>14</sup>C]-2OG; reactions were quenched with an equal volume of MeCN (4°C). Peptide modifications were analyzed using a MALDI-TOF microMX machine in negative or positive ion modes using an  $\alpha$ -cyano-4-hydroxy-cinnamic acid (CHCA) matrix (1:1). MS/MS analyses used a

Bruker Daltonics Ultraflex MALDI TOF/TOF machine. Proteins were analyzed by 'non-denaturing' MS using a Waters Q-Tof spectrometer (Loenarz *et al*, 2009); typically, experiments were performed at least twice. To analyze peptide binding to the VHL complex, a modification of a fluorescence resonance energy transfer assay (Dao *et al*, 2009) was used (Loenarz *et al*, 2009) with *N*-terminally biotinylated peptides (50 nM). The data output ('FRET signal') from the EnVision Multilabel plate reader (PerkinElmer) is the ratio of the 665 nm and 615 nm emission signals, multiplied by 10,000. Assays were performed in duplicate. Peptides were prepared by solid phase peptide synthesis (CS Bio CS336), as described (Loenarz *et al*, 2009).

| Entry | Species | Name                                            | Database         | Sequence*                    |
|-------|---------|-------------------------------------------------|------------------|------------------------------|
| 1     | HUMAN   | HIF-1α <sub>556-574</sub> (CODD)                | gi: 4504385      | DLDLEMLAPYIPMDDDFQL          |
| 2     | HUMAN   | HIF-1α <sub>395-413</sub> (NODD)                | gi: 4504385      | DALTLLAPAAGDTIISLDF          |
| 3     | HUMAN   | HIF-1α <sub>788-806</sub> (CAD)                 | gi: 4504385      | DESGLPQLTSYDCEVNAPI          |
| 4     | HUMAN   | <i>trans</i> 4Hyp-564 HIF-1α <sub>556-574</sub> | gi: 4504385      | DLDLEMLA-Hyp-YIPMDDDFQL      |
| 5     | HUMAN   | <i>trans</i> 4Hyp-402 HIF-1α <sub>395-413</sub> | gi: 4504385      | DALTLLA-Hyp-AAGDTIISLDF      |
| 6     | TRIAD   | HIFα <sub>477-497</sub> (ODD)                   | JGI: scaffold_5  | EKEDYDDLAPFVPPPSFDNRL        |
| 7     | TRIAD   | <i>trans</i> 4Hyp-486 HIFα <sub>477-497</sub>   | JGI: scaffold_5  | EKEDYDDLA-Hyp-FVPPPSFDNRL    |
| 8     | DICDI   | Skp1 <sub>135-153</sub> (ddSkp1)                | gi: 66822139     | FNIKNDFTPEEEEQIRKEN          |
| 9     | DICDI   | <i>trans</i> 4Hyp-143 Skp1 <sub>135-153</sub>   | gi: 66822139     | FNIKNDFT-Hyp-EEEEQIRKEN      |
| 10    | NEMVE   | HIFα (CAD)                                      | JGI: scaffold_26 | VKALFPYVTQSDAEVNAPV          |
| 11    | NEMVE   | HIFα (ODD)                                      | JGI: scaffold_26 | ESNELQNRAPYIPPPTGDAAL        |
| 12    | ANOGA   | HIFα <sub>397-415</sub> (CODD)                  | gi: 158290352    | ELDLSMRAPYISMSEVDDL          |
| 13    | TRICA   | HIFα <sub>543-561</sub> (CODD)                  | gi: 189237669    | ESDLVAKAPYITMNMGDDL          |
| 14    | CANMG   | HIFα <sub>468-486</sub> (NODD)                  | gi: 107051811    | PEDLTHLAPSGGDTCVPLP          |
| 15    | CANMG   | HIFα <sub>657-675</sub> (CODD)                  | gi: 107051811    | SDEFEMRAPYIPPSNELLL          |
| 16    | PALPU   | HIFα <sub>629-647</sub> (CODD)                  | gi: 50261639     | LDEFDMRAPFIPLSNELLM          |
| 17    | STRPU   | HIFα <sub>404-423</sub> (NODD)                  | gi: 115653070    | VEEKLAYLAPTAGDVMIELD         |
| 18    | STRPU   | HIFα <sub>519-536</sub> (CODD)                  | gi: 115653070    | DELAMRAPYIPMGEDFDL           |
| 19    | BRAFL   | HIFα (NODD)                                     | JGI: Bf_V2_6     | PEDLTRVAPAAGDAMIPLG          |
| 20    | BRAFL   | HIFα (CODD)                                     | JGI: Bf_V2_6     | AEELSYRAPYIPAYQMPLN          |
| 21    | DANRE   | HIF1αI2 <sub>435-454</sub> (CODD)               | gi: 59933250     | ELDLDSLAPYIPMHGEDFLL         |
| 22    | CAEEL   | HIFα <sub>607-634</sub> (ODD)                   | gi: 193207991    | DDLQWEEPDLSCLAPFVDTYDMMQMDEG |
| 23    | DROME   | HIFα <sub>843-861</sub> (ODD)                   | gi: 195574995    | FEAFAMRAPYIPIDDDMPL          |
| If    | availab | le, the GenBar                                  | k protein        | entry (gi) is given          |

Table. Peptide sequences used in analyses.

(www.ncbi.nlm.nih.gov/Genbank); otherwise the JGI entry specifies the gene scaffold

(www.jgi.doe.gov). \*Abbreviations: Hyp, *trans*-4-hydroxyprolyl; see supplementary Table S3 for organism abbreviations.

#### Trichoplax RNA interference experiments

RNAi analyses employed a modification of a reported procedure (Jakob *et al*, 2004). Probes for genes were prepared as pGEM-T easy vector (Promega) inserts: Following linearization by PCR, they were transcribed using T7 or SP6 RNA polymerase (Roche), and purified by Li<sup>+</sup>/EtOH precipitation after treatment with DNase I. Singlestranded RNA from T7 and SP6 transcriptions were annealed overnight (100 mM NaCl, 10 mM MgCl<sub>2</sub>, 1 mM dithiothreitol in 50 mM Tris, pH 7.9, 95 °C) and cooled over 16 hours; a transfection complex consisting of the annealing product (~2 µg) and 5 µl FuGENE HD (Roche) in seawater (1 ml) was incubated (16 hours) with ~10 *Trichoplax*. Primers for the *taPHD* probe were 5'-GGAGCATCAACAATCCCATT-3' and 5'-CTACAACTGCTCCCCAGGAA-3'. Double-stranded RNA corresponding to the *C. elegans egl-9* gene (strain VC575) was used as a control (primers: 5'-CAAGGGAACACCTTCTACCG-3', 5'-TGCAGGATCAACAACGAAA-3').

#### Construct design, heterologous expression, and purification of proteins

DNA for *Trichoplax* taPHD was synthesized with codon-optimization for expression in *E. coli* (Geneart AG, Germany), and inserted into the pET-28b (NheI/SacI for taPHD<sub>64-300</sub>) and pEF6-HA (BamHI/SalI) vectors for expression with an *N*-terminal His<sub>6</sub>-tag (*E. coli*) or an *N*-terminal HA-tag (HEK293T cells). Expression vectors for *N*-terminally HA-tagged human PHD2<sub>2-426</sub> and *C. elegans* EGL-9<sub>2-723</sub> were constructed using the pEF6-HA vector (BamHI/EcoRI, a gift from R. Marais, London, UK). The vector for expression of PHD2<sub>181-426</sub> (pET-28a) has been described (McNeill *et al*, 2005). All constructs were verified by sequencing. Recombinant proteins were produced with an *N*-terminal His<sub>6</sub>-tag using *E. coli* Rosetta 2 cells; Expression was induced by isopropyl- $\beta$ -D-thiogalactosidase (typically 0.5 mM, ~14 hours at 18 °C). Cells were harvested and lyzed by sonication in 20 mM Tris-HCl (pH 7.9), 0.5 M NaCl and 10 mM MgCl<sub>2</sub>; soluble protein was purified by immobilized Ni(II) affinity chromatography then by gel filtration chromatography. Protein of >95% purity (by SDS/PAGE analysis) was exchanged into 50 mM Tris-HCl (pH 7.5) buffer with 500 mM NaCl and concentrated.

#### Statistical analyses

Intergroup comparisons were statistically analyzed using unpaired t tests.

#### **Bioinformatic analyses**

Bioinformatic analyses used BioPerl (www.bioperl.org), BLAST 2.2.17 (NCBI), HMMER v2.3.2 (http://hmmer.wustl.edu), and Pfam (Sanger). Analyzed genomes (JGI, www.jgi.doe.gov; Ensembl, www.ensembl.org; NCBI, www.ncbi.nlm.nih.gov) included datasets of masked assemblies, gene, and protein models (see supplementary Table S1). Contour plots used functions within the 'gplots' library of the R-statistical programming language (www.r-project.org). For detailed analyses of protein domains, models from databases were checked using Genscan (http://genes.mit.edu/GENSCAN.html) and curated as necessary. Protein homology models used Modeller v8.3 (UCSF) and PDBs 3HQR, 1AN4, and 1LQB. Multiple alignments of protein sequences used ClustalW2 (www.ebi.ac.uk/Tools/clustalw2), refined using GeneDoc (www.nrbsc.org/gfx/genedoc).

#### 2. Supplementary Data

#### 2.1. Supplementary Figures



Fig S1. Analysis of potential HRE sequences in transcription factor binding sites, and candidate HIF $\beta$  proteins. (A) Contour plot showing the frequency of potential HRE sequences per 100 base pairs (bp) across promoter regions of 50 metazoan and protist genomes (plotted as ± 1.96 SD from the mean; number of analyzed organisms in brackets; for analyzed organisms see supplementary Table S1). Average deviations from the mean in the 'enriched' region from -300 to +299 bp are: Protists (-1.2 SD), non-bilateria (+2.2 SD), non-chordate invertebrates (+2.2 SD), non-vertebrate chordates (+1.8 SD), ray-finned fishes (+2.9 SD), birds (+2.8 SD), non-primate mammals (+3.0 SD), and primates (+3.1 SD). Control analyses of predicted RNA polymerase II binding site sequences (eukaryotic TATA box, i.e. TATAWAA, where W is A

or T) across the same organisms were qualitatively as anticipated ('enriched' from -300 to -1 bp in protists (+1.8 SD) and animals (+0.67 SD); 'lowered' from 0 bp to +299 bp in protists (-0.6 SD) and animals (-1.3 SD)). (**B**) Predicted domain structures of *Trichoplax* bHLH-PAS proteins; sequence 14211 (Srivastava *et al*, 2008) corresponds to the likely taHIF $\beta$  homolog. Asterisks indicate (predicted) DNA interacting residues based on homology modeling (PDB 1AN4).

он ь Е|K]Е]D[Y]D]D]L]A]P[F]V]P[P[P[S]F[D[N[R|L



Fig S2. MS/MS analysis of taHIF $\alpha$  ODD hydroxylation by taPHD. MALDI TOF MS/MS analysis of a hydroxylated taHIF $\alpha_{477-497}$  peptide (2479.5 Da peak). The b-ion (b2-b9, b11-b12) and y-ion series (y2-y17) are in green and blue, respectively (not all peaks, including those for internal fragments, are assigned). The data reveals hydroxylation of taHIF $\alpha$  at Pro-486 (note +16 Da mass increase for peaks from y12/b11 onwards).



Fig S3. (A) taHIFa binds the VHL complex in a prolyl-hydroxylation dependent manner; taPHD inhibition studies; Many HIFa ODDs from across metazoans are substrates of human PHD2. Non-denaturing electrospray ionization MS analyses showing that binding of human and Trichoplax HIFa peptides to the VHL complex is increased by prolyl trans-4-hydroxylation. Non-hydroxylated peptides did not bind substantially (<5%) to the VHL complex. (B) Structure homology model showing recognition of taHIF $\alpha$  trans-4-hydroxyprolyl-486 in the C<sup>4</sup>-exo conformation at the taVHL binding pocket (His-64 and Thr-60 are equivalent to His-115 and Ser-111 in human VHL, PDB 1LQB). (C) Inhibition of taPHD-catalyzed taHIFa hydroxylation by small molecules (1 mM; n = 3;  $\pm$  SEM). NOG, N-oxalylglycine; PDCA. pyridine dicarboxylate; N-[(1-chloro-4-hydroxy-3-A. isoquinolinyl)carbonyl]glycine. (D) Despite their low sequence conservation, HIF $\alpha$ substrates from most other tested species are hydroxylated by PHD2 (results were similar with taPHD). The extent of hydroxylation of 100 µM peptide after 30 min incubation with 4  $\mu$ M PHD2 is indicated (+++, >80%; ++, >50%; +, >15%; -, no hydroxylation); see supplementary Table S3 for organism abbreviations.



Fig S4. Hypoxia causes variation in  $taHIF\alpha$  splicing of Trichoplax. (A and B)

Alternative splicing of  $taHIF\alpha$ , and location of primers for RT-q-PCR analyses.

#### **2.2. Supplementary Tables**

# Table S1. Organism groups and genome annotation files employed in protist and animal promoter analyses.

Note: This table is provided as a separate XLS format file.

The table lists analyzed datasets of masked assemblies from either JGI (www.jgi.doe.gov) or Ensembl (www.ensembl.org). The associated gene and protein models were also used.

## Table S2. Conservation of HIF $\alpha$ transcription factor domains that are

| Clade     | Species | Database ID             | HIFa NODD              | HIFa CODD             | HIFa CAD             |
|-----------|---------|-------------------------|------------------------|-----------------------|----------------------|
| Placozoa  | TRIAD   | JGI:56360               |                        | KEDYDDLAPFVPPPSFDNRL  |                      |
| Cnidaria  | NEMVE   | JGI:scaffold_26 GenScan |                        | SNELQNRAPYIPPPTGDAAL  | GVKALFPYVTQSDAEVNAPV |
| Ecdysozoa | CAEEL   | gi:3876881              |                        | EPDLSCLAPFVDTYDMMQM   |                      |
|           | DROME   | gi:24651293             |                        | FEAFAMRAPYIPIDDDMPLL  |                      |
|           | CULQU   | gi:170035200            | EPDDLTHLAPTAGDACIPLEE  | DLDLSMRAPYISMSEVDDL   |                      |
|           | APIME   | gi:110756935            | EPEDLTHLAPTPGDVCVPLED  | DDELELRAPYIPMSDQDEAL  |                      |
|           | ANOGA   | gi:158290352            | EPDDLTHLAPTAGDACIPLEE  | ELDLSMRAPYISMSEVDDL   |                      |
|           | AEDAE   | gi:157114231            | EPDDLTHLAPTAGDACIPLEE  | DLTMSMRAPYISMSEVDDL   |                      |
|           | NASVI   | gi:156551204            | EPEDLTHLAPTAGDVCVPLEE  | DDELALRAPYIPMSDQDEAL  |                      |
|           | TRICA   | gi:189237669            | EPDDLTHLAPVAGDVCVPLDD  | ESDLVAKAPYITMNMGDDL   | ATIPSLLDLTQQDFEVNAPV |
|           | PALPU   | gi:50261639             | EPDDLTHLAPSGGDTCVPLEV  | LDEFDMRAPFIPLSNELLML  | LTIPSLSELSQLDFEVNAPA |
|           | CANMG   | gi:107051811            | EPEDLTHLAPSGGDTCVPLPT  | SDEFEMRAPYIPPSNELLL   | DTIPTLLELTQQDYEVNAPA |
| Lophotroc |         |                         |                        |                       |                      |
| hozoa     | LOTGI   | JGI:169204              | EPEDLTHLAPMPSGACTLGSH  | LIDMNERSPFIPMSRQSDHSL | SLSTILPCLTQQDYEVNAPT |
| Echinoder |         |                         |                        |                       |                      |
| mata      | STRPU   | gi:115929387            | VEEKLAYLAPTAGDVMIELDP  | CDELAMRAPYIPMGEDFDL   | PLGAVLPLITNLDAEVNAPL |
| Cephaloch |         |                         |                        |                       |                      |
| ordata    | BRAFL   | JGI:scaffold_35 GenScan | SPEDLTRVAPAAGDAMIPLGF  | AEELSYRAPYIPAYQMPLN   | LPVDFLPPLTRADVEVNAPI |
| Fish      | DANRE   | ENSDARG00000034293      | EPEALTVLAPAAGDAIISLDF  | DLDLEMLAPYIPMDDDFQL   | EGSGGLPQLTRYDCEVNAPV |
|           |         | ENSDARG0000008697       | EPEELAQLAPMPGDAIIALDF  | DLDLETLAPYIPMDGEDFQL  | FDSYCLPELTRYDCEVNMPL |
|           |         | ENSDARG00000041169      | NPEELLQLAPHSGDAIISLTE  | ELDLDMLAPYISMDDDFQL   |                      |
|           |         | ENSDARG0000006181       |                        | GLDLEMLAPYIPMDDDFQL   | AIAMPLPQITHHDCEVNAPV |
|           |         | ENSDARG00000057671      | EPEDLTQLAPTPGDTIISLDF  | DLDLETLAPYIPMDGEDFQL  | FETYSLPELTRYDCEVNVPL |
|           |         | ENSDARG00000044550      |                        | ELDLDSLAPYIPMHGEDFLL  | AALLTLPVLSGWECEVNAPL |
|           | TETNG   | ENSTNIG00000017339      | RPGALTMLAPAAGDTVVPLDF  | DLDLEMLAPYIPMDYDFQL   | HSLFSLPQLTRDDCEVNAPL |
|           |         | ENSTNIG00000017338      | RPGALTMLAPAAGDTVVPLDF  | DLDLEMLAPYIPMDYDFQL   | HSLFSLPQLTRDDCEVNAPL |
|           |         | ENSTNIG0000019821       | n/a                    | n/a                   | n/a                  |
|           |         | ENSTNIG0000009866       | EPEDLTQLAPTPGDTIITLDF  | DLDLETLAPYIPMDGEDFQL  | FESTCLPELTRYDCEVNVPL |
|           |         | ENSTNIG0000006798       | KPEQLLQLAPEAGDVVPLTE   | EMDLEMLAPYISMDDDFQL   |                      |
|           |         | ENSTNIG0000005330       | n/a                    | n/a                   | n/a                  |
| Amphibia  | XENTR   | ENSXETG00000014449      | EPESLTVLAPDAGDEIISLDF  | DLDLEMLAPYIPMDDDFQL   | LDGTVLPQLTGYDCEVNAPV |
|           |         | ENSXETG00000026167      | EPEDLAQLAPTPGDEIVSLDF  | DLDLETLAPYIPMDGEDFQL  | FEPYLLPELTRYDCEVNVPV |
|           | XENLA   | gi:148229705            | EPESLTVLAPDAGDEIIPLDF  | DLDLEMLAPYIPMDDDFQL   | FDGTVLPQLTGYDCEVNAPV |
|           |         | gi:147900690            | EPESLTALAPDAGDDIIPLDF  | DLDLEMLAPYIPMDDDFQL   | LDGTGLPQLTGYDCEVNAPV |
|           |         | gi:148227427            | EPEELAQLAPTPGDEIVSLDF  | DLDLETLAPYIPMDGEDFQL  | FESYLLPELTRYDCEVNVPV |
|           |         | gi:147904360            | EPEDLAQLAPTPGDEIVSLDF  | DLDLETLAPYIPMDGEDFQL  | FESYLLPELTRYDCEVNVPV |
| Aves      | CHICK   | gi:45383550             | EPDALTVLAPAAGDTIISLDF  |                       | DESGLPQLTSYDCEVNAPI  |
|           |         | gi:46048879             | EPEELAQLAPTPGDAIISLDF  | ELDLETLAPYIPMDGEDFQL  | FEPYLLPELTRYDCEVNVPV |
|           | TAEGU   | gi:224051853            | EPDALI VLAPAAGDTIISLDF |                       | DESGLPQLTSYDCEVNAPI  |
|           |         | gi:224047239            | EPEELAQLAPTPGDAIISLDF  |                       | FEPYLLPELTRYDCEVNVPV |
| Mammalia  | ORNAN   | gi:149554358            | EPDALILLAPAAGDIIIYLDF  |                       | DESGLPQLISYDCEVNAPI  |
|           |         | gi:149429726            | EPEELAQLAPTPGDAIISLDF  |                       | LEPYLLPELTRYDCEVNVPV |
|           |         | gi:149517086            |                        | ALDLEMLAPYISMDDDFQL   |                      |
|           | MOUSE   | gi:226061948            |                        |                       |                      |
|           |         | gi:149269519            | EPEELAQLAPTPGDAIISLDF  | ELDLETLAPYIPMDGEDFQL  | FEPYLLPELIRYDCEVNVPV |
|           |         | gi:251823727            |                        |                       |                      |
|           | HUMAN   | gi:4504385              |                        |                       |                      |
|           |         | gi:40254439             | EPEELAQLAPTPGDAIISLDF  |                       | FESYLLPELTRYDCEVNVPV |
|           | 1       | gi:23065535             |                        | DALDLEMLAPYISMDDDFQL  |                      |

#### hydroxylation targets of the 2OG oxygenases PHD and FIH.

Selected entries were prepared as peptides (see Experimental Procedures for details) and tested as substrates of human PHD2 or *Trichoplax* taPHD (for HIF $\alpha$  NODD and CODD domains) or FIH (for HIF $\alpha$  CAD domains) enzymes; entries in bold were

found to be hydroxylated *in vitro* (see supplementary Fig S3D). See supplementary Table S3 for organism abbreviations.

| ExPASy code | Taxonomical name              | Common name              |
|-------------|-------------------------------|--------------------------|
| AEDAE       | Aedes aegypti                 | Yellowfever mosquito     |
| ANOGA       | Anopheles gambiae             | African malaria mosquito |
| APIME       | Apis mellifera                | Honeybee                 |
| BRAFL       | Branchiostoma floridae        | Florida lancelet         |
| CAEEL       | Caenorhabditis elegans        | -                        |
| CANMG       | Cancer magister               | Dungeness crab           |
| CHICK       | Gallus gallus                 | Chicken                  |
| CULQU       | Culex quinquefasciatus        | Southern house mosquito  |
| DANRE       | Danio rerio                   | Zebrafish                |
| DAPPU       | Daphnia pulex                 | Water flea               |
| DICDI       | Dictyostelium discoidum       | Slime mold               |
| DROME       | Drosophila melanogaster       | Fruit fly                |
| HUMAN       | Homo sapiens                  | Human                    |
| LOTGI       | Lottia gigantea               | Owl limpet               |
| MOUSE       | Mus musculus                  | Mouse                    |
| NASVI       | Nasonia vitripennis           | Parasitic wasp           |
| NEMVE       | Nematostella vectensis        | Starlet sea anemone      |
| ORNAN       | Ornithorhynchus anatinus      | Duckbill platypus        |
| PALPU       | Palaemonetes pugio            | Daggerblade grass shrimp |
| STRPU       | Strongylocentrotus purpuratus | Purple sea urchin        |
| TAEGU       | Taeniopygia guttata           | Zebra finch              |
| TETNG       | Tetraodon nigroviridis        | Green puffer             |
| TRIAD       | Trichoplax adhaerens          | -                        |
| TRICA       | Tribolium castaneum           | Red flour beetle         |
| XENLA       | Xenopus laevis                | African clawed frog      |
| XENTR       | Xenpus tropicalis             | Western clawed frog      |

### Table S3. Abbreviations used for organisms.

ExPASy codes were from www.expasy.ch/cgi-bin/speclist.

#### **3.** Supplementary References

- Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. *J Biol Chem* **279**: 38458-38465
- Dao JH, Kurzeja RJM, Morachis JM, Veith H, Lewis J, Yu V, Tegley CM, Tagari P (2009) Kinetic characterization and identification of a novel inhibitor of hypoxia-inducible factor prolyl hydroxylase 2 using a time-resolved fluorescence resonance energy transfer-based assay technology. *Anal Biochem* **384**: 213-223
- Hewitson KS, Schofield CJ, Ratcliffe PJ. (2007) Hypoxia-inducible factor prolylhydroxylase: Purification and assays of PHD2. In Sies H and Brüne B (eds.), *Methods in Enzymology*. Academic Press, Vol. Volume 435, pp. 25-42.
- Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004) The Trox-2 Hox/ParaHox gene of *Trichoplax* (Placozoa) marks an epithelial boundary. *Dev Genes Evol* **214**: 170-175
- Loenarz C, Mecinovic J, Chowdhury R, McNeill LA, Flashman E, Schofield CJ (2009) Evidence for a stereoelectronic effect in human oxygen sensing. *Angew Chem Int Ed* **48**: 1784-1787
- McNeill LA, Flashman E, Buck MRG, Hewitson KS, Clifton IJ, Jeschke G, Claridge TD, Ehrismann D, Oldham NJ, Schofield CJ (2005) Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. *Mol Biosyst* 1: 321-324
- Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, et al. (2008) The *Trichoplax* genome and the nature of placozoans. *Nature* 454: 955-960