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Here, we provide additional methodological details regarding the module preservation statistics. In the first section,
we describe standard cross-tabulation based module preservation statistics. Specifically, we present three basic cross-
tabulation based statistics for determining whether modules in a reference data set are preserved in a test data set.
These statistics do not assume that a test network is available. Instead, module assignments in both the reference and
the test networks are needed.

In the second section, we briefly review a hierarchical clustering procedure for module detection. Many methods
exist for defining network modules. In this section, we describe the method used in our applications but it is worth
repeating that our preservation statistics apply to most alternative module detection procedures.

In the third section, we review the definition of signed and unsigned correlation networks. Correlation networks
are a special case of general undirected networks in which the adjacency is constructed on the basis of correlations
between quantitative variables.

In the fourth section, we present module quality statistics that we are implemented in the modulePreservation R
function. While our main article focuses on statistics that measure preservation of modules between a reference and
a test network, we briefly discuss the application of some of the preservation statistics to the related but distinct task
of measuring module quality in a single (reference) network. More precisely, the density and separability statistics
can be applied to the reference network without a reference to a test network. The results can then be interpreted
as measuring module quality, that is how closely interconnected the nodes of a module are or how well a module is
separated from other modules in the network.

In the fifth section, we review the notation for the singular value decomposition and for defining a module eigennn-
ode. The section describes conditions when the eigenvector E(q) is an optimal way of representing a correlation module.
It also reviews the definition of propVarExpl (the proportion of the variance explained by the eigennode). We derive
a relationship between propVarExpl and the module membership measures kME , which will be useful for deriving
relationships between preservation statistics.

In the sixth section, we investigate relationships between preservation statistics in correlation networks. An advan-
tage of an (unsigned) weighted correlation network is that it allows one to derive simple relationships between network
concepts [1, 2]. We characterize correlation modules where simple relationships exist between i) density-based preser-
vation statistics, ii) connectivity based preservation statistics, and iii) separability based preservation statistics. Apart
from studying relationships among preservation statistics in correlation networks, we also briefly describe relationships
between preservation statistics in general networks.

In the seventh section we briefly review the In-Group Proportion method [3].

1 Cross-tabulation based module preservation statistics

Here we present three basic cross-tabulation based statistics for determining whether modules in a reference data set
are preserved in a test data set. These statistics do not assume that a test network is available. Instead, module
assignments in both the reference and the test networks are needed. For each object i, Cl [ref]i denotes the module
label in the reference module assignment. The module are labeled by q = 1, 2, . . . , Q[ref] where Q[ref] is the number of
modules in the reference set. The number of objects in module q will be denoted by n(q). Assume that the module
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Module Preservation 2

assignment of the test data (Cl [test]) leads to Q[test] modules labelled by q′ = 1, 2, . . . , Q[test]. The goal is to determine
whether a module q in the reference clustering Cl [ref] can be matched to a module q′ in the test clustering Cl [test].
Since many cross tabulation based statistics have been described in the context of cluster preservation and validation
procedures (a review can be found in [3]), we will use the words ”cluster” and ”module” interchangeably in this section.

For each module specified in Cl [ref], a cross-tabulation based preservation statistic defines a value. As convention,
we assume that the higher the preservation value of cluster (module) q, the stronger the evidence that it corresponds
to a cluster specified in Cl [test]. Here we will describe two approaches that are based on cross-tabulating Cl [ref] and
Cl [test], that is creating a contingency table in which every row corresponds to a reference module, and each column
to a test module.

We start with a module preservation statistic based on keeping track of the co-clustering of pairs of objects. For

the q-th module of Cl [ref], one can form
(
n(q)

2

)
= n(q) (n(q)−1)

2 different pairs of objects. Let nqq′ denote the number

of objects which are in the q-th module of Cl [ref] and in the q′-th module of Cl [test]. The number of pairs of objects

in the q-th module of Cl [ref] that are also part of the q′-th module of Cl [test] is given by
(
nqq′

2

)
. The proportion of

pairs of objects in module q that also cluster in module q′ is given by

propCoClustering(q, q′) =
(
nqq′

2

)
/

(
n(q)

2

)
.

Apart from pairs of objects (tupletsize = 2), one can also calculate the proportion of triplets (tupletsize = 3) or
quadruplets of objects (tupletsize = 4) from the q-th module of Cl [ref] that co-cluster in the q′-th module of Cl [test]:

propCoClustering(q, q′, tupletsize) =
(

nqq′

tupletsize

)
/

(
n(q)

tupletsize

)
.

Using the above notation, we define the co-clustering based module preservation statistic as

coClusteringPreservation(q, tupletsize) =
Q[test]∑
q′=1

propCoClustering(q, q′, tupletsize) , (1)

which depends on the tuplet size. For the case tupletsize = 2 (pairs) the co-clustering preservation statistic is related
to the prediction strength statistic in [3, 4].

An alternative cross-tabulation statistic is the accuracy and the related Fisher exact test p-value. For each proper
reference module q with nq objects we find the proper test module q′ with the highest number of objects common to
both the reference and the test module, nqq′ . We define the accuracy of the reference module q in the test clustering
as

accuracyq =
nqq′

nq
. (2)

By definition, the accuracy lies in [0, 1], and accuracyq = 1 indicates that all objects that form the reference module
q are part of the same module in the test network. We emphasize that this definition is only used for the proper
modules. For the improper module that contains all objects not assigned to any of the proper modules (labeled by
the label 0), we define its accuracy as

accuracy0 =
n00′

n0
. (3)

where n0 is the number of unassigned objects, and n00′ is the number of objects unassigned both in the reference and
in the test clusterings.

A potential disadvantage of the accuracy measure is that it does not take into account how likely it is to observe
a particular maximum overlap by chance. As an example, consider a case in which there are say 10 clusters in the
reference clustering, and a test clustering in which the clusters are perfectly reproduced, so the accuracy of all 10
reference clusters equals 1. Now consider another test clustering in which all objects belong to a single cluster. The
accuracies of all clusters with respect to the second test clustering again equal 1, but intuitively the second test
clustering is less interesting than the first clustering. To address this issue, we define a p-value based preservation
statistic as follows. For each reference-test pair q, q′ of proper modules, we calculate the one-sided Fisher p-value of
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the observed overlap of the two modules, pqq′ . For each proper reference module q, we then report minus the logarithm
of the lowest (most significant) p-value:

mlfpq = − log
(

min
q′

pqq′

)
. (4)

For the improper module of unassigned variables that carry the label 0 we define

mlfp0 = − log p00′ . (5)

2 Using hierarchical clustering for module detection

Many methods exist for defining network modules; here we describe the method used in our applications. We define
modules as clusters of ”similar” nodes. To measure the dissimilarity of nodes, one can define the adjacency matrix
based dissimilarity:

dissAij = 1− aij . (6)

However, more elaborate dissimilarities can be constructed from an adjacency. For example, several measures of
network interconnectedness are described in [5]. In our applications and simulations we use the topological overlap
measure [5–8] as input to hierarchical clustering [9]; branches of the hierarchical clustering dendrogram correspond to
modules and can be identified using one of a number of available branch cutting methods, for example the constant-
height cut or two Dynamic Branch Cut methods [10]. Our branch cutting algorithm only assigns module labels to
branches whose size exceeds a user-specified threshold parameter. Not all nodes necessarily belong to a module. Nodes
that do not belong to a module are called “unassigned” and conventionally carry the label 0. Thus, the clustering
results in assigning a module (or zero) label Cl i to each node i. In practice, it is advisable to vary the minimum module
size and other branch cutting parameters to determine how the results are affected by different parameter choices.
This module detection approach has led to biologically meaningful modules in several applications [1, 7, 11–15].

3 Signed and unsigned correlation networks

Methods surrounding the weighted correlation network analysis are implemented in the R package WGCNA [16]. Corre-
lation networks are a special case of general undirected networks in which the adjacency is constructed on the basis
of correlations between quantitative measurements that can be described by an n×m matrix datX = [xui] where the
column indices correspond to network nodes (i = 1, . . . , n) and the row indices (u = 1, . . . ,m) correspond to sample
measurements:

datX = [xui] = (x1x2 · · ·xn) . (7)

We refer to the i-th column xi as the i-th node profile across m sample measurements.
A correlation network adjacency matrix is constructed on the basis of the pairwise correlations cor(xi, xj) be-

tween the columns of datX . We distinguish two types of correlation network adjacencies, signed and unsigned. The
elements of an unsigned adjacency matrix can be written as a non-decreasing function of the absolute correlations,
i.e. aij = nonDecreasingF (|cor(xi, xj)|). In contrast, the elements of a signed adjacency matrix can be written as
a non-decreasing function of the correlation, i.e. aij = nonDecreasingF (cor(xi, xj)). These non-decreasing functions
are required to yield adjacencies that continue to satisfy our conditions imposed on a general adjacency matrix (in
particular the components are required to lie within [0, 1]), but are otherwise in principle arbitrary.

We define the unsigned and signed adjacencies in terms of a general non-decreasing function nonDecreasingF of
|cor(xi, xj)| and cor(xi, xj), respectively. Several forms of the non-decreasing function have been proposed in the
literature. For example, a common choice is the step function with threshold τ ,

nonDecreasingF (s) =
{

0 for s < τ
1 for s ≥ τ . (8)

This approach to constructing the adjacency is known as hard-thresholding and leads to an unweighted network in
which the adjacency only takes on values 0 (unconnected) or 1 (connected). In contrast, in our applications we use a
continuous function that results in a weighted network. The following nonDecreasingF leads to an unsigned adjacency:

aunsigned
ij = |cor(xi, xj)|β , (9)
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that is
nonDecreasingFunsigned(s) = sβ . (10)

In contrast, the signed adjacency is given by

asigned
ij =

(
1 + cor(xi, xj)

2

)β
, (11)

that is

nonDecreasingF signed(s) =
(

1 + s

2

)β
. (12)

The choice of signed versus unsigned networks depends on the application; both signed [17] and unsigned [18] gene
networks have been successfully used in gene expression analysis. The above definitions of adjacency can be modified,
for example, by replacing the Pearson correlation by an outlier-resistant correlation. When dealing with large networks
(comprised of thousands of genes) one can use default choices for the power β: 6 for an unsigned network and 12 for
a signed network. These powers implement a soft-thresholding approach. An advantage of weighted networks is that
the network construction is highly robust with regard to the choice of β [7]. The default choices are implemented in
our R function modulePreservation. The default choices have worked in many publications but one can also develop
criteria heuristics for choosing a threshold. For example, [7] proposed the scale free topology criterion for choosing β.

4 Module quality statistics defined for the reference network

In most of this work we have focused on statistics that measure preservation of modules between a reference and a
test network. In this section we briefly discuss the application of some of the preservation statistics to the related but
distinct task of measuring module quality in a single (reference) network. More precisely, the density and separability
statistics can be applied to the reference network without a reference to a test network. The results can then be
interpreted as measuring module quality, that is how closely interconnected the nodes of a module are or how well a
module is separated from other modules in the network. In Table 1, we provide an overview of the input required to
calculate each of the module quality statistics presented here. All statistics require the module assignment (label) from
the reference data and output a quality statistic based on the reference data (i.e., no test set is used). Specifically, the
module quality statistics are given by

meanAdj [ref](q) = mean
(

vectorizeMatrix (A[ref](q))
)
, (13)

meanCor [ref](q)
unsigned = mean

{
vectorizeMatrix

(
|r[ref](q)ij |

)}
, (14)

meanCor [ref](q)
signed = mean

{
vectorizeMatrix

(
r
[ref](q)
ij

)}
, (15)

meanKME [ref](q)
unsigned = meani∈Mq

{
|kME [ref](q)

i |
}
, (16)

meanKME [ref](q)
signed = meani∈Mq

{
kME [ref](q)

i

}
, (17)

propVarExpl [ref](q) = meani∈Mq

{
(kME [ref](q)

i )2
}
, (18)

separability [ref](q1, q2) = 1− cor(E[ref](q1), E[ref](q2)) . (19)

The mean adjacency (Equation 13) applies to a general network while the remaining statistics assume a correlation net-
work. The meanCor and meanKME statistics each have slightly different versions for signed and unsigned correlation
networks.

Thus the correlation statistic of module quality is simply the mean of (the absolute values of) the variable-variable
correlations within the module. Low reference separability may suggest that the two modules q1, q2 are not really
distinct and should be merged.
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5 Singular value decomposition and module eigengenodes

Assume an m × n dimensional matrix datX whose i-th column xi is a numeric vector with m components. The
singular value decomposition (SVD) of datX is the decomposition

datX = UDV T , (20)

where U and V are matrices of left and right singular vectors, respectively, and the matrix D is a diagonal matrix
that contains the singular values |d1|, |d2|, . . .:

U = (u1u2 . . . umin(m,n))
V = (v1v2 . . . vmin(m,n)) (21)
D = diag{|d1|, |d2|, . . . , |dmin(m,n)|}.

We use the absolute value sign around the singular values to remind the reader that the singular values are non-
negative real numbers. In the following, we assume that the singular values are arranged in a decreasing order so
|d1| is the largest value. The m × min(m,n) dimensional matrix U and the n × min(m,n) dimensional matrix V
contain orthonormal columns. Non-degenerate singular values always have unique left and right singular vectors, up
to multiplication by a sign. Consequently, if all singular values of datX are non-degenerate and non-zero, its singular
value decomposition is unique, up to multiplication of a column of U by a sign and simultaneous multiplication of the
corresponding column of V by the same sign. In applications the first singular value |d1| is typically non-degenerate.
In this case, u1 and v1 are uniquely defined up to a sign. In practice, we fix the sign of u1 by requiring that its average
correlation with the columns of datX is positive.

In the following, we describe an important use of the left singular vectors of a singular value decomposition. Since
it is widely used when dealing with network modules (which represent clusters of vectors), we find convenient to
introduce notation for the case where the numeric vectors represent a subset of the original set of vectors. Thus the
columns of the m × n(q) matrix datX (q) represent a subset of the original n vectors. We typically scale the columns
of datX (q) so that they have mean zero (mean(xi) = 0) and mean((xi)2) = 1. The singular value decomposition

datX (q) = U (q)D(q)(V (q))T . (22)

provides an m × min(m,n(q)) dimensional matrix U (q) of left singular vectors. The sign of the first left singular
vector u(q)

1 is fixed by requiring that its average correlation with the columns of datX (q) is positive. When datX q

corresponds to the gene expression data of a network module, u(q)
1 (the first column of U (q)) is referred to as the

module eigengene. More generally, we refer to the vector

E(q) = u
(q)
1

as the eigenvector or the eigennode in the context of a correlation network. While E(q) is in general not an eigen-
vector of datX (q) it turns out to be an eigenvector of the m×m dimensional matrix datX (q)(datX (q))T corresponding
to the largest eigenvalue. The eigenvector E(q) is an optimal way of summarizing the scaled columns of datX (q) in the
sense that it explains the highest amount of the variation in the scaled columns.

Using the fact that the columns are scaled (
∑
u xui = 0 and

∑
u x

2
ui/m = 1), one can show:

cor(xi, xj) =
∑
l

vl,i|dl|2vl,j/m , (23)

kME i = cor(xi, E(q)) = v1,i|d1|/
√
m, (24)∑

i

(kME i)2/n(q) =
|d1|2

mn(q)
. (25)

The proportion of variance explained by the eigenvector E(q) is given by

propVarExpl(E(q)) =
|d(q)

1 |2∑min(m,n(q))
j=1 |d(q)

j |2
=
|d1|2

mn(q)
. (26)
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We now derive the following relationship between propVarExpl (Eq. 26) and the mean squared kME value:

propVarExpl [test](q) = meani∈Mq

{(
kME [test](q)

i

)2
}
, (27)

where E[test](q) is the eigennode of module q in the test network. The derivation is rather straightforward:

propVarExpl [test](q) =
|d1|2

mn
=
∑
i

v2
1,i

|d1|2

mn

= meani∈Mq

{(
kME [test](q)

i

)2
}

where E[test](q) is the eigennode of module q in the test network.
The singular value decomposition of datX (q) is closely related to the principal component analysis of the correlation

matrix cor.datX(q) = (cor(x(q)
i , x

(q)
j )) whose entries correspond to the pairwise correlations between the columns of

datX (q). The eigenvalues of the correlation matrix cor.datX(q) are squares of corresponding singular values |d(q)
l |.

E(q) explains a high proportion of the variation of the scaled columns of datX (q) if these columns have high pairwise
correlations.

6 Relationships preservation statistics in correlation networks

One can derive theoretical relationships between preservations statistics in the case of approximately factorizable
adjacency matrices (aij ≈ CFi CFj) and correlation modules (cor(xi, xj) ≈ kME i kME j) [1,2]. In particular, the geo-
metric interpretation of correlation networks [2] shows when close relationship exist among the density based preser-
vation statistics (meanCor , meanAdj , propVarExpl , meanKME ), among the connectivity based preservation statistics
(cor .kIM , cor .kME , cor .kMEall , cor .cor), and between the separability statistics (separability .ave, separability .ME ).
In the following, we briefly outline how to derive relationships.

Relationships among density preservation statistics

A theoretical advantage of an (unsigned) weighted correlation network with adjacency aij = |cor(xi, xj)|β (Eq. 9) is
that it allows one to derive simple relationships between network concepts [1, 2]. In [2], it is shown that correlation
module networks with high eigennode factorizability EF (E(q)), where

EF (E(q)) =
|d(q)

1 |4∑
j |d

(q)
j |4

, (28)

lead to an approximately factorizable correlation matrix

cor(x(q)
i , x

(q)
j ) ≈ cor(x(q)

i , E(q)) cor(x(q)
j , E(q)) (29)

≈ kME i kME j .

We now show that EF (E(q)) ≈ 1 implies that mean correlation

meanCor [test](q) = mean
{

vectorizeMatrix
(

sign(r[ref](q)ij )r[test](q)ij

)}
(30)
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of a correlation module that contains only positively-correlated genes is proportional to the proportion of variance
explained propVarExpl (Eq. 27). Then

meanCor =
1

n(q)(n(q) − 1)

n(q)∑
i=1

n(q)∑
j 6=i

cor(xi, xj)

≈ 1
(n(q))2

n(q)∑
i=1

n(q)∑
j=1

cor(xi, xj)

(by approximate factorizability) ≈ 1
(n(q))2

n(q)∑
i=1

n(q)∑
j=1

cor(xi, E(q))cor(xj , E(q))

≈ 1
(n(q))2

n(q)∑
i=1

n(q)∑
j=1

v1,iv1,j |d1|2/m

=

(∑n(q)

i=1 v1,i√
n(q)

)2

|d1|2

mn(q)
=

(∑n(q)

i=1 v1,i√
n(q)

)2

propVarExpl

= (cos(θ(q)))2propVarExpl , (31)

where θ(q) is the angle between the vector v1 and the vector 1 whose components equal 1. This derivation assumed
that all correlation in the reference as well as in the test networks are positive.

Approximate factorizability cor(x(q)
i , x

(q)
j ) ≈ kME i kME j (Eq.29) also implies that

meanCor ≈ 1
(n(q))2

n(q)∑
i=1

n(q)∑
j=1

kME i kME j (32)

=
(∑

i kME i

n(q)

)2

= (meanKME )2 .

For an unsigned weighted network, cor(x(q)
i , x

(q)
j ) ≈ kME i kME j (Eq.29) implies that

meanAdj ≈ 1
(n(q))2

n(q)∑
i=1

n(q)∑
j=1

|kME i|β |kME j |β =
(∑

i |kME i|β

n(q)

)2

With Eq. 27, one can easily show that for β = 2

meanAdj ≈
(∑

i |kME i|2

n(q)

)2

= propVarExpl [test](q) . (33)

Relationships among connectivity preservation statistics in correlation networks

If the eigennode factorizability of a module is high, one can show that [2]

kIM i√∑
j kIM j

≈ |kME |βi (34)

for an unsigned weighted correlation network constructed with the soft threshold β (Eq. 9) [2].
For the correlation between intramodular connectivities

cor .kIM (q) = cor
(

kIM [ref](q), kIM [test](q)
)
, (35)

this implies

cor .kIM (q) ≈ cor
(
|kME [ref](q)|β , |kME [test](q)|β

)
. (36)
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Thus, for the special case of a weighted module network with β = 1 and positive values of kME

cor .kIM ≈ cor .kME . (37)

The relationships between cor .kME and cor .kMEall depends on the extramodular nodes, i.e., the nodes outside
the module network under consideration. Only if their contribution to the correlation cor .kMEall is negligible then

cor .kMEall ≈ cor .kME . (38)

Based on approximate factorizability (Eq. 29) one can show that

cor .cor (q) ≈ cor .kME (q) , (39)

where
cor .cor (q) = cor

(
vectorizeMatrix (r[ref](q)), vectorizeMatrix (r[test](q))

)
. (40)

and
cor .kME (q) = cori∈Mq

(kME [ref](q)
i , kME [test](q)

i ) , (41)

Similarly, approximate factorizability (Eq 29) of an unsigned weighted correlation network aij = |cor(xi, xj)|β
implies that

cor .Adj ≈ cor(|kME i|β , |kME j |β) . (42)

Thus, in the special case where β = 1 and the module is comprised of genes with positive values of kME, cor .Adj is
approximately equal to cor .kME .

Relationships among separability statistics in correlation networks

Here we derive a relationship between the average separability

separability .ave(q1, q2) = 1− InterAdj .ave(q1, q2)
IntraDensity(q1, q2)

(43)

and an eigennode based analog for an unsigned weighted correlation network whose adjacency is given by aij =
|cor(xi, xj)|β . If modules q1 and q2 have high eigennode factorizability (Eq. 28), one can show [2]

separabilityaverage(q1, q2) ≈ 1− |cor(E(q1), E(q2))|β . (44)

Eq. 44 can be used to argue that by increasing the soft threshold β, correlation modules tend to become more separated.
Further, note that for a weighted network with β = 1, we find that

separability .ave ≈ separability .ME .

Preservation statistics in general factorizable module networks

Most of our results regarding the relationships between module preservation statistics critically depend on the ap-
proximate factorizability of the correlation matrix (Eq. 29), i.e., cor(x(q)

i , x
(q)
j ) ≈ kME i kME j . We now outline a

generalization of these derivations to general adjacency matrices that satisfy a related property: approximate factor-
izability. A network is referred to as approximately factorizable if its adjacency can be approximated as [1, 2]

aij ≈ CF i CF j . (45)

The quantity CF i is called the conformity of node i. In this work we focus on networks in which individual module
networks, rather than the whole network, are approximately factorizable. In this context, CF i is called the module
conformity of node i. Empirical evidence suggests that many module networks (in particular those defined as clusters)
satisfy approximate factorizability [1]. For example, many module networks satisfy Equation 45 with

CFi ≈
kIM i√∑
j kIM j

.
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If the adjacency matrix A is approximately factorizable

aij ≈
kIM i kIM j∑

l kIM l

, then one can show that
cor .Adj ≈ cor .kIM , (46)

where
cor .Adj = cor

(
vectorizeMatrix (A[ref]), vectorizeMatrix (A[test])

)
. (47)

In [2], it is shown that weighted correlation modules with high eigennode factorizability satisfy

aij = |cor(xi, xj)|β ≈ CF (q)
i CF (q)

j , (48)

where
CF i ≈ |kME i|β (49)

For a general module network, the conformity CFi can be interpreted as a generalization of the eigennode based
connectivity. This suggests to define conformity based preservation statistics by replacing kME i with CFi in
the definitions of

meanKME [test](q) = meani∈Mq

{
sign(kME [ref](q)

i )kME [test](q)
i

}
(50)

and cor .kME (Eq. 41).

7 Brief review of In-group proportion

Kapp and Tibshirani [3] have introduced a prediction-based method for measuring cluster preservation between a
reference and a test data set. They define a cluster quality measure called the in-group proportion (IGP) and introduce
a general procedure for individually validating clusters.

The method is formulated directly in terms of expression data. Let X [ref] denote the m× n matrix of microarray
data in the reference data, where m is the number of samples and n is the number of genes. Assume that a subset of
the genes in X have been partitioned into Q clusters (labeled 1, 2, ..., Q) and C [ref] is the m×Q matrix of the centroids.
Denote by X [test] is an p×n matrix of microarray data independent of X [ref], then all of the genes (columns) of X [test]

can be classified to one of the Q clusters or to a below-cutoff group using the centroids C [ref] and a cutoff c. For gene
i, define its cluster in the test data by

Cl [test]i =


0 if max

1≤q≤Q
cor(X [test]

j , C
[test]
q ) < c

argmax
1≤q≤Q

cor(X [test]
j , C

[test]
q ) if max

1≤q≤Q
cor(X [test]

j , C
[test]
q ) ≥ c

. (51)

Thus, every gene in the test data is classified to the cluster represented by the nearest centroid, or to the below-cutoff
group if the correlation of the gene with the nearest centroid is below the cutoff c. In this way, a new cluster assignment
is obtained in the test data. The quality of these clusters is then evaluated using the IGP, defined as the proportion
of genes in a cluster whose nearest neighbors are also in the same cluster. Denote by nn(i) the nearest neighbor of
gene i in the test data set, i.e., nn(i) = argmax k 6=icor(X [test]

k , X
[test]
i . Then the IGP of cluster q is defined as

IGP (q,X [test]) =
#{i|Cl[test]i = Cl

[test]
nn(i) = q}

#{i|Cl[test]i = q}
. (52)

The authors of [3] compared the in-group proportion is compared to four other popular cluster quality measures
(homogeneity score, separation score, silhouette width, and WADP score). They found the in-group proportion is the
best measure of prediction accuracy. The algorithm is implemented in the package clusterRepro available from the
Comprehensive R Archive Network (http://cran.r-project.org).
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Tables

Table 1. Overview of module quality statistics.

No. Statistic Statistic type Network type Reference netw. input
Label Adj datX

1 meanAdj Density general yes yes no
2 separabilityaverage Separability general yes yes no
3 meanCor Density correlation yes no yes
4 propVarExpl Density correlation yes no yes
5 meanKME Density correlation yes no yes
6 separability Separability correlation yes no yes

The table reports the input needed for module quality measures that either measure module density or separability
in the reference network. Note that the density based and separability based module quality measures (defined in the
reference network) correspond to preservation statistics (evaluated in the test network).


