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General Model for Dependency Groups Larger than 2.Our manuscript
presents an analytical analysis of a network containing both
connectivity links and dependency groups of size s ¼ 2. However,
our results describing the fundamental increase in the network
vulnerability due to the existence of cascading failures that lead
to a first-order phase transition, is a general property that occurs
in networks containing dependency groups. Moreover, for net-
works with larger dependency groups the fundamental change
in the network behavior becomes even more extreme. Fig. S1 pre-
sents simulation results of the giant cluster size, α∞, as a function
of p for increasing sizes of dependency groups. For larger depen-
dency groups, the first-order transition occurs for larger values of
p indicating that the network is more vulnerable.

Formalism for General Case (0 ≤ q ≤ 1). The formalism for the gen-
eral case of 0 ≤ q ≤ 1 is significantly more involved. After an
initial removal of a fraction 1 − p of the network nodes the
remaining part of the network is β0 ¼ p. The initial removal will
cause additional nodes to disconnect from the giant cluster (per-
colation process). The remaining functional part of the network
after the percolation process is α1 ¼ gðβ0Þβ0. Next, all nodes that
depend on the fraction, 1 − α1, of nonfunctional nodes, will also
fail (dependency process). Because only a fraction q of the pairs
cause each other to fail, the fraction of new nodes that will fail
due to dependencies is δ1 ¼ qð1 − α1Þα1 (we multiply by α1 be-
cause we are interested in the fraction of new nodes that fail,
i.e., the fraction of nodes that fail from α1), which is equivalent
to a new random removal of r1 ¼ ð1 − β0Þ þ qð1 − α1Þβ0 from the
original network. To understand why, note that when reducing the
problem at step n to an equivalent random removal of a fraction,
rn, from the original network we are assuming a percolation pro-
cess has not yet occurred. Thus, the fraction of nodes depending
on the (1 − αn) failing nodes must not be calculated from the re-
maining part αn after percolation but rather from the remaining
part prior to the percolation process βn−1. To that we must add
1 − βn−1 which is the fraction of nodes removed in the previous
random removal.

The remaining fraction of nodes after the new random removal
is β1 ¼ 1 − r1 ¼ p2qgðβ0Þ þ pð1 − qÞ. After performing again the
percolation phase, the remaining functional part of the giant
component is α2 ¼ β1gðβ1Þ. The next step involves calculating
the fraction of nodes that failed in the percolation process and
will cause the nodes that depend on them to fail. However, com-
pared to the original network, this fraction ðα1 − δ1Þ − α2 includes
a higher density of nodes that cannot cause other nodes to fail
(their pairs were removed on the previous stage). To overcome
this problem we present an equivalent representation which
also defines, δ01 ¼ ð1 − α1Þα1, a quantity that takes into account
not only δ1 ¼ qð1 − α1Þα1, the fraction of new nodes that fail
due to dependencies, but also the fraction ð1 − qÞð1 − α1Þα1
that do not have pairs. Accordingly, we define r01 ¼ ð1 − β0Þþ
ð1 − α1Þβ0, β01 ¼ p2gðβ0Þ, and α02 ¼ β01gðβ1Þ, respectively. Now,
instead of ðα1 − δ1Þ − α2, that includes a higher density of
nodes that cannot cause other nodes to fail, we define ½α1−
ð1 − α1Þα1� − α02 which has the original fraction q of dependent
pairs. Accordingly, the fraction of nodes that are disconnected
due to dependencies is δ2 ¼ qðα02∕α21Þðα21 − α02Þ ¼ q½1 − ðα02∕
α21Þ�α02, which is equivalent to an initial removal of r2 ¼
ð1 − β1Þ þ q½1 − ðα02∕α21Þ�β01 from the original network. The re-
maining fraction of nodes is therefore β2 ¼ 1 − r2 ¼ β20gðβ1Þþ
β0ð1 − qÞ ¼ p2qgðβ1Þ þ pð1 − qÞ. Following this approach, we

obtain the sequence

β0 ¼ p:

β1 ¼ qp2gðβ0Þ þ pð1 − qÞ:
β2 ¼ qp2gðβ1Þ þ pð1 − qÞ…
βm ¼ qp2gðβm−1Þ þ pð1 − qÞ:

Note that when substituting q ¼ 1, we obtain βm ¼ p2gðβm−1Þ, the
specific solution presented in the manuscript for q ¼ 1.

Number of Stages in the Iterative Process of Cascading Failures. We
show that at the first-order region, above the transition point pI
(p > pI) the average number of stages hni, in the iterative process
of cascading failures scales as hni ∼ ln N∕

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
, below pI

(p < pI), hni ∼ 1∕
ffiffiffiffiffiffiffiffiffiffiffiffi
pI − p

p
and at p ¼ pI , hni ∼ N1∕4. Thus as

the distance from the transition is increased, the number of
stages sharply drops providing a useful method for identifying
the critical value of pI at the first-order transition.

For p > pI , near the first-order transition, Eq. 1 (in the main
paper) has two roots produced by the intersection of the curved
line which can be approximated by a parabola y ¼ aðpÞx2þ
bðpÞxþ cðpÞ and a straight line y ¼ x. The solution can also be
obtained by solving a quadratic equation

aðpÞx2 þ ½bðpÞ − 1�xþ cðpÞ ¼ 0. [S1]

The value p ¼ pI is given by the discriminant of this equation
equal to zero: dðpIÞ≡ ðbðpIÞ − 1Þ2 − 4aðpIÞbðpIÞ ¼ 0. In the gen-
eral case, all three parameters, aðpÞ, bðpÞ, and cðpÞ, have nonzero
derivatives at p ¼ pI . Therefore, in the general case dðpÞ has also
a nonzero derivative at p ¼ pI , and hence the difference between
the roots scales as

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
. Thus, the derivative of the curve at

the largest root, which corresponds to the limit of the iterative
process scales as f 0 ¼ 1 − α

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
, where α is some positive

constant. For Eq. 1 (in the main paper) the iterations converge
to the root as f 0n ¼ expð−α

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
nÞ. In a real network, they

will stop when the difference between two successive iterations
will be smaller than one node, which yields a condition
expð−α

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
nÞ ∼ 1∕N. Hence indeed hni ∼ lnN∕

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
.

For p < pI , the solution does not exist and the curve misses the
line with the distance proportional to the negative discriminant.
As the curve comes close to the line, the steps are proportional to
ðx − xcÞ2 þ d, where d ∼ pI − p is the minimal distance between
the curve and the line. The number of such steps per dx is
dx∕½ðx − xcÞ2 þ d�. The total number of steps are thus the integral
of this quantity between x ¼ p and x ¼ 0, which in the limit d → 0
gives hni ¼ π∕

ffiffiffi
d

p
∼ 1∕

ffiffiffiffiffiffiffiffiffiffiffiffi
p − pI

p
.

Exactly at the critical point p ¼ pI the straight line touches the
curve at a single point and the sequence of iterations converges as

xnþ1 − xc ¼ xn − xc − aðxn − xcÞ2: [S2]

These iterations converge to xc as 1∕n which can be seen by plug-
ging into this equation xn − xc ¼ C∕nβ þ oðn−βÞ where C and β
are some unknown constants. Expanding ðnþ 1Þ−β in Taylor ser-
ies and equating coefficients for equal powers, one can see that
β ¼ 1. However, for a finite network, the critical fraction of
remaining nodes μa has a Gaussian spread and thus the distance
from criticality scales as ðμa − pIÞ ∼ 1∕

ffiffiffiffi
N

p
. Therefore the distri-

butions of the number of stages in the cascade has an exponential
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tail exp½−αn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa − pI

p
�, in which (μa − pIc) must be replaced by its

typical value 1∕
ffiffiffiffi
N

p
. Accordingly, the distribution of PðnÞ will

have an exponential tail PðnÞ ∼ exp½−α0n∕N1∕4�, where α′ is some

positive constant. Thus at criticality, we expect that hni ∼N1∕4 as
supported by our simulations (Fig. S3).
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Fig. S1. Simulation results of the giant cluster size, α∞, as a function of p for increasing sizes of dependency groups. For larger dependency groups, the
first-order transition occurs for larger values of p indicating that the network is more vulnerable.

Fig. S2. A schematic illustration of the iterative cascade process for the case of q ¼ 1. Each step is composed of two phases: (i) the percolation phase on which
nodes fail due to the percolation process, and (ii) the dependency phase onwhich nodes that depend on nodes that have already failed also fail. One node from
each pair of nodes connected by a dependency link is marked in red and the other in gray. At each stage, αn is the remaining fraction after the percolation
process (α0 ¼ 1), and δn is the fraction removed due to dependencies (see manuscript for more details). The fraction of nodes failing on each step are shown
above the graphical description of the system and the fraction of remaining nodes after each step is presented below the graphical description.
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Fig. S3. Scaled distribution of the number of stages in the cascade failures for Erdős–Rényi network with hki ¼ 3 at criticality, for different values of N.
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