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SI Results
Experiments 2c and 2d. Our method required using probe sounds
that were distinct from the target half of the time. In the single-
mixture conditions of Experiments 1, 2a, and 2b, these “incorrect”
probes were constrained to be physically consistent with the
mixture; they could be no higher in level than the mixture at any
point in the spectrogram. In the multiple-mixture conditions, the
probes were constrained to be physically consistent with one of
the mixtures in the sequence, selected at random. In principle,
subjects might have been basing their performance in the mul-
tiple-mixture conditions not on perceiving the segregated target
sound, but rather by noticing when the probes were physically
inconsistent with some of the mixtures on such trials (e.g., by
noting that the probe contained frequencies that some of the
mixtures did not).
To help exclude this possibility, we repeated Experiments 2a

and 2b using incorrect probes that were constrained only to be
acoustically similar to the targets. Incorrect probes were gener-
ated by fixing a time slice (1/8 of the sound’s duration) to be equal
to the targets, drawing conditional samples (SI Materials and
Methods), and keeping only those samples whose spectrogram,
expressed in dB (relative to the maximum time-frequency cell)
and clipped at –40 dB, had a correlation coefficient of 0.8–0.9
with that of the target sound. Thus, the incorrect probes were no
less physically consistent with the single-mixture conditions on
average than with the multiple-mixture conditions; in both cases,
they could have more energy than the mixtures at certain spec-
trogram locations. If noticing these inconsistencies was the basis
for the subjects’ performance, then the single- and multiple-
mixture conditions should produce similar results.
We also used distractor sounds that were customized for each

target, such that each distractor masked part of the target accord-
ing to at least one of the criteria used for the distractors in Ex-
periment 6. This was done to rule out the possibility that some of
the mixtures might sound sufficiently similar to the target such
that subjects could merely match the probe sound to individual
mixtures. In all other respects, the methods were similar to those
used in Experiments 2a and 2b. Eight of the original 10 subjects
participated.
As shown in Fig. S1, we obtained similar results using this al-

ternative method. Performance again improved with the number
of different mixtures heard, indicating that subjects were not
simply noticing properties of individual mixtures relative to the
probe sound. As in Experiments 2a and 2b, we found amain effect
of the number of different mixtures [F(4,28) = 15.0, P < 0.0001],
but no effect of experiment type [F(1,7) = 0.22, P = 0.65] and no
interaction [F(4,28) = 0.95, P = 0.45]. The main difference be-
tween the results of Experiments 2a and 2b and Experiments 2c
and 2d was the the latter experiments’ better performance in the
single-mixture conditions. This difference indicates that listeners
can achieve greater-than-chance performance with single mix-
tures by monitoring something akin to physical consistency (e.g.,
whether the probe sound contains frequencies that the mixture
does not), but that the benefit of multiple mixtures exceeds this
small effect.

Experiment 5: Temporal Jitter. If mixture variability is indeed the
key to recovering a sound source, then it should be possible to
enhance performance for a single repeated mixture by varying the
time offset between target and distractor. We ran an experiment
with the one-, two-, and 10-mixture conditions of Experiment 2b,
with the distractor sounds either synchronous with the target

sounds (as in Experiment 2b) or jittered randomly in time by up to
120 ms in either direction. As shown in Fig. S2, varying the timing
of the distractors relative to the targets improved performance for
the one-mixture [t(9) = 5.34, P < 0.0001] and two-mixture con-
ditions [t(9) = 3.09, P = 0.01], but not for the 10-mixture condi-
tion [t(9) = 0.87, P = 0.4, paired t test]. This difference produced
an interaction between synchrony and mixture number [F(2,8) =
28.26, P < 0.0001]; there were also significant main effects of both
factors, as is apparent from the results graph. Temporal variability
thus aids segregation when the sounds in the mixtures do not
themselves vary much, but is not of benefit otherwise.

Experiment 6: Grouping Ambiguities vs. Energetic Masking. Many
studies have considered sound segregation to be hindered by two
distinct factors, commonly termed“energetic”and“informational”
masking (1–10).Given that exposure to a sound inmultiple distinct
mixtures apparently can help an observer overcome both factors,
we explored whether this was the case for human listeners.
When multiple sound sources each have energy at approxi-

mately the same point in frequency and time, they “energetically”
mask each other. The sound higher in energy dominates, and the
energy of the other sources at that point is not physically evident
(Fig. S3A, second row, far right, green-labeled cells). However,
even if a target sound is not energetically masked, the presence
of another sound source can impair its identification. A mixture
of sounds contains acoustic energy scattered over frequency and
time, some parts of which belong together and some of which do
not (Fig. S3A, second row, far right; red-labeled cells belong to
the distractor rather than to the target). If this energy is im-
properly grouped, then the target will be misheard. This effect
has come to be known as “informational” masking, because the
source of the impairment is not physical spectro-temporal
overlap, but rather an ambiguity of grouping (1–10).
Hearing a target sound mixed successively with different dis-

tractor sounds could help overcome both types of masking,
(energetic masking because features that are physically obscured
in one mixture are unlikely to be obscured in the next, and in-
formational masking because the features belonging to a partic-
ular sound will tend to occur repeatedly in a fixed configuration,
signaling that they belong together). By tracking feature config-
urations over time, the auditory system could build up a repre-
sentation of the sound that is robust to both factors. The
computational scheme outlined in Fig. 5 provides one example of
how this might occur. The distractors occasionally obscure fea-
tures of the target (energetically masking it). The distractors also
tend to have energy in places where the target does not, and in
a single mixture it is unclear how the energy should be grouped.
The time-locked averaging mechanism proposed in the main text
averages out both effects.
To test whether listeners can use multiple mixtures in this way,

we first generated a set of customized distractor sounds for each
target sound, each of which both energetically and non-
energetically masked the target to a significant extent. We did this
by generating many potential distractors and selecting those that
had energy in some of the places where the target cell did not and
also that exceeded the target sound in amplitude in some of the
places where its energy was above a threshold value (SI Methods).
We then isolated the energetic and nonenergetic components of
masking by thresholding the distractor stimuli in the time-fre-
quency domain (11). To eliminate nonenergetic masking, we set
the distractors to 0 at spectrogram locations in which the target
sound had minimal energy (< −40 dB for the maximum level
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across cells). The resulting sounds had energy only in places
where the target did, and as such could only energetically mask
the target (Fig. S3A, third row). To minimize energetic masking
but preserve nonenergetic masking, we made the complimentary
manipulation, setting the distractors for each target sound to
0 in places where the target was above the threshold and the
distractor was sufficiently high to have a chance of masking it
(SI Methods; Fig. S3A).
We measured subjects’ ability to perceive the target in se-

quences of mixtures with these three types of distractors. As
shown in Fig. S3B, for all three distractor types, subjects re-
mained close to chance after hearing a repeating single mixture,
but were far above chance when presented with multiple dif-
ferent mixtures, producing a main effect of mixture variability
[F(1,7) = 137.49, P < 0.0001] and no interaction with distractor
type [F(2,14) = 1.95, P = 0.18]. These results indicate that both
energetic and informational masking contribute to the difficulty
of segmenting our sound mixtures, but that hearing a sound
multiple times in distinct mixtures can ameliorate both factors.
This finding is consistent with the computational scheme out-
lined in the main text, which overcomes energetic and in-
formational masking with the same simple averaging mechanism.

SI Materials and Methods
Subjects. Ten subjects (four females; average age, 26 ± 4 y)
participated. All had pure-tone thresholds of 20 dB hearing level
or less at octave frequencies between 250 and 8,000 Hz, and
none reported any history of hearing disorders. The same sub-
jects were used throughout, but in Experiments 2b, 2c, 3a, 3b,
and 6, only 8 of the 10 subjects were available, and in Experiment
4, only 7 of the 10 subjects were available.

Sound Analysis and Synthesis. A set of 39 filters equally spaced on
an ERBN scale (12) spanning 20–4,000 Hz, with half-cosine
frequency responses was used for sound analysis and synthesis.
The time windows were raised cosines, 20 ms in width.
Because we wanted to synthesize sounds with the properties of

individual natural sound sources rather than mixtures of sources,
it was important to analyze recordings of isolated sounds. Spec-
trogram correlations were measured for 350 English words
spoken by two speakers, one male and one female, and 30 animal
vocalizations taken from sound effects CDs. Each sound clip was
edited to remove any silence at the beginning and end. Corre-
lations between pairs of spectrogram cells at either the same
frequency or the same time point were measured for the initial
500-ms segment of each natural sound. These correlations were
then averaged across pairs of cells with the same offset, yielding
temporal correlation functions at each frequency and spectral
correlation functions at each time point. The shape of these
correlation functions was fairly consistent across frequency and
time, as in previous reports (13), so we averaged them to yield
single temporal and spectral correlation functions for each
stimulus set, as displayed in Fig. 1 C and D. There were some
differences in these functions across the sets of sounds, but all
were clearly distinct from the correlations of white noise (Fig. 1
C and D). We found qualitatively similar correlation functions
with alternative sets of sounds, such as excerpts of sentences, or
sounds made by inanimate objects (e.g., impact sounds) – cor-
relations generally fell slowly and smoothly with increasing time
or frequency offsets, although the rate of decay varied depending
on the specific sound set analyzed.
The correlation functions used to generate the covariance

matrix of our generating distribution had decay constants of
−0.075 per filter and −0.065 per time window. We imposed
separable correlations in time and frequency; although there are
some deviations from this in natural sound sets (14), these are
slight. The mean of each spectrogram cell in the generating
distribution was set such that the stimuli would have a flat

spectrum on average. This deviated from the average spectra of
natural sounds, but it ensured that the high frequencies were
audible and not easily masked by simultaneous low frequencies.
Onset and offset ramps (10-ms half-Hanning windows) were
applied to all synthetic sounds.

Generation of Incorrect Probes. In half of the trials, the probe was
different from the target. Our challenge was to generate these
“incorrect” probes such that performance would depend pri-
marily on sound segregation rather than on other factors. Simply
using another sample from our generating distribution proved to
be inadequate, because such a sound often had more energy at
some time-frequency location than the mixture of the target and
a distractor, and could be judged on this basis. We found it
necessary to choose incorrect probes that were both statistically
comparable to the target sounds and physically consistent with
the mixture in question.
We adopted the following procedure. At a randomly selected

time slice (equal to 1/8 of the sound’s duration, or 4 of 32 time
windows), the incorrect probe was set equal to the mixture (be-
cause the target was typically equal to the mixture in some places;
see Fig. 1 for an example). A conditional sample was then drawn
from the Gaussian generating distribution (15) to yield a new
sound with the covariance structure of the target sounds. This
sample was then set equal to the mixture at all points in the
spectrogram where it exceeded the mixture level, to ensure that
the incorrect probe was physically consistent with themixture. The
resulting spectrogram was then rejected if it differed from the
mixture by less than an average of 7 dB, to ensure that the incorrect
probe was not more similar to the mixture than was the target.

Procedural Details. Sounds were played out by a LynxStudio
Lynx22 24-bit D/A converter at a sampling rate of 48 kHz, and
were presented diotically over Sennheiser HD580 headphones at
a sound pressure level of 72 dB. Incorrect probes were scaled by
the same factor as the corresponding target so as to remain
physically consistent with the mixture.
Subjects were instructed to use all four responses approxi-

mately equally often. In all experiments, subjects completed two
blocks containing 20 trials per condition.
From pilot versions of the experiments, it became apparent that

hearing the target sound was essentially impossible in conditions
with a single mixture. To help maintain motivation, feedback was
given in only 75% of all trials in all conditions. Pilot versions that
eliminated feedback on all trials or provided it on all trials yielded
similar results, so this choice appears to not have been critical.

Trial Structure. Each trial was initiated by pressing a key. In Ex-
periment 1, subjects were presented with a mixture followed by
a probe sound (conditions 1 and 2), a probe sound followed by
a mixture (conditions 3 and 4), a target sound followed by a probe
sound (condition 5), or a mixture followed by another mixture
(condition 6). In conditions 1–4, the task was to judge whether the
probe sound was one of the sounds in the mixture. In conditions 5
and 6, the task was to judge whether the two sounds were the same
or different. In Experiments 2–6, subjects were presented with
mixture(s) followed by a probe sound. The task was to judge
whether the probe sound was one of the sounds in the mixture(s).

Experiment Structure. In Experiments 1 and 2a, trials for a con-
dition were grouped together because stimulus timing and/or
tasks differed across condition; conditions were completed in
opposite order in the two blocks, to reduce order effects. In all
other experiments, trials were ordered randomly. In Experiment
3a, conditions 1 and 2 were run in separate sessions from con-
ditions 3, 4, and 5. Subjects began by completing a full-length
practice session (20 trials per condition) of Experiment 1. Before
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starting Experiment 2a, subjects also completed a full-length
practice session of that experiment.

Experiment 3b: Time-Reversed Targets. Condition 2 used time-re-
versed versions of the target as the incorrect probes; the task was
as in the other experiments. To make this task feasible, we used
target sounds that were selected to be asymmetric in time; those
included had to have spectrograms with a correlation of <0.2 with
their time reversal. We also used these sounds in conditions 1
and 3 of this experiment. Incorrect probes for conditions 1 and 3
were generated as in the other experiments.

Experiment 6: Energetic and Informational Masking. Target sounds
were generated by the same process as used in the other
experiments, but were rejected if 75% of the cells were not within
40 dB of the maximum spectrogram cell. This was done to fa-
cilitate the generation of distractor sounds that energetically
masked the targets. Distractor sounds were generated separately
for each target and were selected to produce a criterion amount of
masking. To be included as a distractor, a sound had to produce
a mixture that met the following two conditions in at least 25% of
the spectrogram cells: (i) the mixture exceeded the target by at
least 5 dB and the target was no more than 40 dB below the
maximum level across the windows of that target, and (ii) the
mixture was no more than 40 dB below its maximum level and
the target was at least 40 dB below its maximum level. The first
condition produced distractors that energetically masked the
target. The second condition produced distractors that “in-
formationally” masked the target, because they contained energy
where the target did not. These distractors were then thresh-
olded in the time-frequency domain as described in the text.
Incorrect probes were generated for each type of distractor using
the procedure described above.
The criteria for zeroing a cell in the distractors that minimized

energetic masking were that the target energy be no more than
40 dB below its maximum and that the distractor energy be no
more than 10 dB below that of the target. These criteria of
physical overlap neglect masking over time and between adjacent
frequency bins, and thus the resulting distractors surely produced
some residual energetic masking. However, they generated far
less of it than did the unthresholded distractors, while preserving
nonenergetic masking of the target.

Target Estimation Model. The spectrogram of the acoustic input
(the mixture sequence) was divided into 700-ms blocks, with 50%
overlap between adjacent blocks. The target was estimated with
the following series of steps:

(i) The target estimate was initialized to the first block.
(ii) The cross-correlation of the target estimate with the cur-

rent block was computed for different time delays.
(iii) A peak-picking algorithm (http://billauer.co.il/peakdet.

html, with the delta parameter set to 0.05) was used to
identify the first large peak in the correlation func-
tion (which should indicate the position of the next target
occurrence).

(iv) The target estimate was updated with the current spec-
trogram block. The updating process involved taking the
pointwise minimum of the target estimate and the cur-

rent spectrogram block, with the spectrogram block time-
shifted by the delay of the peak. The minimum was used
because mixing two sounds generally serves to increase
the spectrogram energy over that present in either sound
alone, such that the target sound is likely to never be more
than the minimum of two mixtures containing it (16).

(v) Steps ii–iv were repeated with the next block of the spec-
trogram.

The block size and overlap constrain the duration of the targets
that can be detected. Specifically, to produce a peak in the cross-
correlation function, a target must fall within the block. To ensure
that targets are not “missed,” the amount by which blocks overlap
must exceed the target length, so that if a target falls on the
boundary of a block, then the next block is guaranteed to contain
it. In our simulations, we chose the block size to roughly match
the analysis window suggested by the results of Experiment 4. We
arbitrarily set the overlap to 50%, to ensure detection of the
300-ms experimental stimuli. The overlap could be easily ex-
tended to permit the detection of longer-duration targets.
The algorithm is reasonably robust. Targets that overlap the

block boundary are not erroneously averaged, because they do not
produce a correlation peak; the peak-picking algorithm detects
only peaks with lower values on either side. The algorithm uses
only the first peak in the correlation function for a block, such that
if multiple examples of the target fall within an analysis block, only
the first one triggers the averaging process, and the rest are left for
the next block. If a particular target exemplar falls within two
successive blocks, there is no effect of it being counted twice,
because the pointwise minimum operation does not change the
target estimate in this case.
Nonetheless, the scheme is clearly oversimplified. For instance,

listeners can sometimes extract a target source from mixtures in
the presence of other repeating sounds (e.g., Experiment 3a,
condition 3), indicating that multiple templates may be used si-
multaneously. The algorithm that we implemented also does not
address what should be done in the event that a peak is not
detected in an analysis block, as when the target spacing exceeds
the block length, conditions under which human perception
suffers (Experiment 4).Moreover, the algorithm works only to the
extent that the correlation peaks identified correspond to the
target position in the signal. If a peak corresponding to something
other than the target onset is chosen (as can sometimes occur if
random variation in the sound structure produces a peak), then
errors can be introduced in the target estimate. Some of these
errors simply reflect suboptimal peak-picking. It is likely that the
brain has more robust algorithms than we do, and we would not
expect our model to match the performance of human listeners.
However, it is also notable that human subjects do not perform at
ceiling in our task, and that targets are easier to hear in some
mixture sequences than in others. It would be interesting to ex-
plore whether any of this variability could be explained by vari-
ation in the model’s performance due to the clarity of correlation
peaks in different mixture sequences. That said, the model is
intended mainly as a proof of concept that latent repeating
structure could be extracted with a relatively simple, bottom-up
mechanism. We make no claims that it is near optimal, or that it
can match human performance.
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