Concordant Measure E and a Test Statistic

$$
E = \frac{1}{2} \left\{ \frac{\sum p_{1j} s_{2j}}{\sum p_{1j}} + \frac{\sum p_{2j} s_{1j}}{\sum p_{2j}} \right\}
$$

Population parameters and estimates

We postulate that (p_{1j}, s_{1j}) , for $j = 1,...n$ is a random sample from a "population 1" with mean (μ_{p_1}, μ_{s_1}) , variances $\sigma_{p_1}^2$, $\sigma_{s_1}^2$, and covariance γ_1 . Similarly, we assume (p_{2j}, s_{2j}) are from "population 2" with mean (μ_{p_2}, μ_{s_2}) , variances $\sigma_{p_2}^2$, $\sigma_{s_2}^2$, and covariance γ_2 .

We can estimate the parameters of the populations using the sample data as follows. For $i = 1, 2$

$$
\hat{\mu}_{p_i} = \bar{p}_i = \sum_j p_{ij}/n, \qquad \hat{\mu}_{s_i} = \sum_j s_{ij}/n,
$$

$$
\hat{\sigma}_{p_i}^2 = \sum_j (p_{ij} - \bar{p}_i)^2 / (n - 1), \quad \hat{\sigma}_{s_i}^2 = \sum_j (s_{ij} - \bar{s}_i)^2 / (n - 1)
$$

$$
\gamma_i = \sum_j (p_{ij} - \bar{p}_i)(s_{ij} - \bar{s}_i) / (n - 1)
$$
(1)

Null Hypothesis of No Concordance and the Null Distribution of E

We want (estimates for) the mean and variance of E under the null hypothesis of no concordance between the two samples.

We assume that the null hypothesis of no concordance is equivalent to the condition that (p_{1i}, s_{1i}) 's are independent of (p_{2i}, s_{2i}) 's.

Under the null hypothesis, E is approximately normally distributed, i.e.,

$$
E \sim N(\mu_E, \sigma_E^2/n) \tag{2}
$$

where μ_E , σ_E^2 are given in terms of the parameters $\mu_{p_1}, \mu_{s_1}, \sigma_{p_1}^2, \sigma_{s_1}^2, \mu_{p_2}, \mu_{s_2}, \sigma_{p_2}^2, \sigma_{s_2}^2, \gamma_1$ and

 γ_2 , as follows:

$$
\mu_E = (\mu_{s_1} + \mu_{s_2})/2
$$

\n
$$
\sigma_E^2 = \delta' \Sigma \delta,
$$
\n(3)

where

$$
\delta = 0.5 \cdot (1/\mu_{p_1}, -\mu_{s_2}/\mu_{p_1}, 1/\mu_{p_2}, -\mu_{s_1}/\mu_{p_2})',
$$
\n(4)

and Σ is a symmetric matrix whose elements (on and above the diagonal) are given below

$$
\Sigma = \begin{pmatrix}\n\sigma_{p_1}^2 \sigma_{s_2}^2 + \sigma_{p_1}^2 \mu_{s_2}^2 + \sigma_{s_2}^2 \mu_{p_1}^2 & \mu_{s_2} \sigma_{p_1}^2 & \gamma_1 \gamma_2 + \gamma_1 \mu_{p_2} \mu_{s_2} + \gamma_2 \mu_{p_1} \mu_{s_1} & \gamma_2 \mu_{p_1} \\
\sigma_{p_1}^2 & \gamma_1 \mu_{p_2} & 0 \\
\sigma_{p_2}^2 \sigma_{s_1}^2 + \sigma_{p_2}^2 \mu_{s_1}^2 + \sigma_{s_1}^2 \mu_{p_2}^2 & \mu_{s_1} \sigma_{p_2}^2 \\
\sigma_{p_2}^2 & \sigma_{p_2}^2\n\end{pmatrix}
$$

Test statistic

Estimates of μ_E , σ_E^2 , namely, $\hat{\mu}_E$, $\hat{\sigma}_E^2$, can be obtained by substituting the estimates in (1) for the parameters in the expression for μ_E , σ_E^2 , given in (3).

By (2) , a test statistic for testing the null hypothesis of no concordance is a z-test statistic, given by

$$
z = \sqrt{n} \left(\frac{E - \hat{\mu}_E}{\hat{\sigma}_E} \right)
$$

Details of the Derivation

$$
E = \frac{1}{2} \left\{ \frac{\sum p_{1j} s_{2j}}{\sum p_{1j}} + \frac{\sum p_{2j} s_{1j}}{\sum p_{2j}} \right\}
$$

=
$$
\frac{1}{2} \left\{ \frac{\sum p_{1j} s_{2j}/n}{\sum p_{1j}/n} + \frac{\sum p_{2j} s_{1j}/n}{\sum p_{2j}/n} \right\}
$$

=
$$
\frac{1}{2} \left\{ \bar{X}_{1}/\bar{X}_{2} + \bar{X}_{3}/\bar{X}_{4} \right\},
$$

where $X_{1j} = p_{1j}s_{2j}$, $X_{2i} = p_{1j}$, $X_{3j} = p_{2j}s_{1j}$, and $X_{4j} = p_{2j}$.

In the following we assume the null hypothesis is true.

By CLT,

$$
\sqrt{n}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \stackrel{approx.}{\sim} N(0, \Sigma)
$$

where $\mathbf{X} = (X_1, X_2, X_3, X_4)'$, and $\boldsymbol{\mu}$ and $\Sigma = (\sigma_{ij})$ are the mean and variance of \mathbf{X} , given by

$$
\boldsymbol{\mu} = (\mu_{p_1} \mu_{s_2}, \mu_{p_1}, \mu_{p_2} \mu_{s_1}, \mu_{p_2})
$$

and Σ is a symmetric matrix given by

$$
\Sigma = \begin{pmatrix}\n\sigma_{p_1}^2 \sigma_{s_2}^2 + \sigma_{p_1}^2 \mu_{s_2}^2 + \sigma_{s_2}^2 \mu_{p_1}^2 & \mu_{s_2} \sigma_{p_1}^2 & \gamma_1 \gamma_2 + \gamma_1 \mu_{p_2} \mu_{s_2} + \gamma_2 \mu_{p_1} \mu_{s_1} & \gamma_2 \mu_{p_1} \\
\sigma_{p_1}^2 & \gamma_1 \mu_{p_2} & 0 \\
\sigma_{p_2}^2 \sigma_{s_1}^2 + \sigma_{p_2}^2 \mu_{s_1}^2 + \sigma_{s_1}^2 \mu_{p_2}^2 & \mu_{s_1} \sigma_{p_2}^2 \\
\sigma_{p_2}^2 & \sigma_{p_2}^2\n\end{pmatrix}
$$

For convenience, we will use the notation $\mu = (\mu_1, \mu_2, \mu_3, \mu_4)'$ and $\Sigma = (\sigma_{ij})$ to refer to the components of μ and Σ .

Now,

$$
E = g(\bar{\bm{X}})
$$

where $g(\mathbf{x}) = g(x_1, x_2, x_3, x_4) = (x_1/x_2 + x_3/x_4)/2.$

By Delta method,

$$
E \stackrel{approx.}{\sim} N(\mu_E, \sigma_E^2/n)
$$

where

$$
\mu_E = g(\mu) = (\mu_{s_1} + \mu_{s_2})/2)
$$

$$
\sigma_E^2 = \delta' \Sigma \delta,
$$

and

$$
\delta = \frac{\partial g(x)}{\partial x} evaluated \, dt \, x = \mu
$$

= 0.5 \cdot (1/\mu_{p_1}, -\mu_{s_2}/\mu_{p_1}, 1/\mu_{p_2}, -\mu_{s_1}/\mu_{p_2})'

Expression μ and Σ in terms of the population parameters

$$
\mu_1 = E(X_1) = E(p_1 s_2) = E(p_1)E(s_2) = \mu_{p_1} \mu_{s_2}
$$

\n
$$
\mu_2 = \mu_{p_1}, \quad \mu_3 = E(p_2 s_1) = \mu_{p_2} \mu_{s_1}, \quad \mu_4 = \mu_{p_2}
$$

\n
$$
\sigma_{11} = var(X_1) = var(p_1 s_2) = E(p_1^2 s_2^2) - E(p_1)^2 E(s_2)^2
$$

\n
$$
= E(p_1^2)E(s_2^2) - E(p_1^2)E(s_2)^2 + E(p_1^2)E(s_2)^2 - E(p_1)^2 E(s_2)^2
$$

\n
$$
= E(p_1^2)V(s_2) + V(p_1)E(s_2^2)
$$

\n
$$
= V(p_1)[V(s_2) + E(s_2)^2] + V(s_2)E(p_1)^2
$$

\n
$$
= \sigma_{p_1}^2 \sigma_{s_2}^2 + \sigma_{p_1}^2 \mu_{s_2}^2 + \sigma_{s_2}^2 \mu_{p_1}^2
$$

\n
$$
\sigma_{12} = Cov(X_1, X_2) = cov(p_1 s_2, p_1) = \mu_{s_2} \sigma_{p_1}^2
$$

\n
$$
\sigma_{13} = Cov(p_1 s_2, p_2 s_1) = \gamma_1 \gamma_2 + \gamma_1 \mu_{p_2} \mu_{s_2} + \gamma_2 \mu_{p_1} \mu_{s_1}
$$

\n
$$
\sigma_{14} = Cov(p_1 s_2, p_2) = \gamma_2 \mu_{p_1}
$$

\n
$$
\sigma_{22} = \sigma_{p_1}^2
$$

\n
$$
\sigma_{23} = \gamma_1 \mu_{p_2}
$$

\n
$$
\sigma_{24} = Cov(p_1, p_2) = 0
$$

\n
$$
\sigma_{33} = var(X_3) = var(p_2 s_1) = \sigma_{p_2}^2 \sigma_{s_1}^2 + \sigma_{p_2}^2 \mu_{s_1}^2 + \sigma_{s_1}^2 \mu_{p_2}^2
$$

\n
$$
\sigma_{34} = Cov(p_2 s_1
$$