Sample CoGAPS Analysis

In this example, we reproduce the DESIDE analysis performed in Ochs et al. [4]
by applying CoGAPS to gene sets defined by TRANSFAC to microarray data
from gastrointestinal stromal tumor (GIST) cell lines . We begin this analysis
by loading the GIST expression measurements provided as an example data set
with our CoGAPS R library.

> library('CoGAPS')

> data('GIST_TS_20084')

> 1s(0)

> GISTDims <- dim(GIST.D)

This data set contains two data.frame objects: 1) the mean gene expression
data in GIST.D (D in eq. (1)), and 2) the uncertainty on the means in GIST.S
(o). The gene expression data.frame objects contain measurements for 1363
genes indexed by UniGene identifiers in rows and 9 timecourse samples along
columns.

The CoGAPS analysis also requires gene sets. As required by the application
of CoGAPS in the DESIDE algorithm, we load the set of genes regulated by
transcription factors provided with our CoGAPS R library.

> data('TFGSList')
> 1s(0)
> TFDims <- ncol (tf2ugFC)

The 230 gene sets defined from TRANSFAC are transcription factor targets
stored in the data.frame object tf2ugFC in accordance with the format de-
scribed in the CoGAPS User’s Manual provided with the package. The user
may also specify gene sets defined in a list object described in the User’s
Manual.

Because this example reproduces the analysis of [4], we will decompose the
GIST data into 5 patterns as determined by empirical analysis with the Clutr-
Free software [1], as described in detail in [2]. The new method for estimation
of the number of factors from [3] can be used as well, and it will appear at
http://www.biostat.jhsph.edu/~jleek.

> nPattern <- 5

We also specify the number of MCMC iterations to be used for the GAPS matrix
decomposition.

> nIter <- 50000000

With these preliminary data sets loaded and parameters specified, we can
finally perform the corresponding CoGAPS analysis with a single call to the
CoGAPS function. This single function call will first perform the GAPS ma-
trix decomposition and then compute the corresponding Z-score indicating the
transcription factor activity for each inferred pattern.



> results <- CoGAPS(data=GIST.D, unc=GIST.S,

+ GStoGenes=tf2ugFC,

+ numPatterns=5,

+ SAIter = 2*nlter, iter = nlter,
+ outputDir='GISTResults',

+ plot=FALSE)

The results variable contains the following variables:
meanChi2 x? value for fit of mean A and P matrices to the data
D gene expression data matrix
Sigma uncertainty in gene expression data matrix
Amean sample mean value of the MCMC A matrix estimates
Asd sample standard deviation value of the MCMC A matrix estimates
Pmean sample mean value of the MCMC P matrix estimates
Psd sample standard deviation value of the MCMC P matrix estimates
meanMock mock data formed by Amean x Pmean

GSUpreg Z-score derived p values for upregulation of each transcription factor
for each pattern

GSDownreg Z-score derived p values for downregulation of each transcription
factor for each pattern

GSActEst Z-score derived estimates for the activity of each transcription fac-
tor for each pattern scaled from —1 (low activity) to +1 (high activity)

Generated with the plotGAPS function, Figure 1 displays the resulting estimates
for the mean A and P matrices, which in this example have a fit to D of
x? = 23009.5483206579.

> plotGAPS(results$Amean, results$Pmean,
+ outputPDF='GISTResults/GIST_GAPS_Figs')

Consistent with [4], Figure 1 reveals two patterns relatively constant across the
time-course samples, one falling with time, one transiently rising, and one con-
tinuously rising. The p values stored in results$GSUpreg, results$GSDownreg,
and results$GSActEst indicate the statistical significance of transcription fac-
tor activity for each of these patterns computed using the Z-score statistic of
[4]. This statistic is generated by first obtaining the mean Z-score for all genes
in a set (i.e., all targets of a transcription factor),

1 A,
Zip = R Z S (1)
reG

Orp



Inferred patterns

P)

o ) [t}
=% =% =%

pl
p4

arrayldx

(a) Inferred amplitude matrix (b) Inferred patterns

Figure 1: Visualization of the (a) A and (b) P matrices inferred by GAPS for
the gene expression measurements of [4].

where 7 indexes the genes, p indexes the patterns, G indicates the gene set,
A,p is the element of the A matrix for gene r and pattern p, and o, is the
corresponding element of the ¢ matrix. This is then a threshold independent
statistic for the gene sets.

While Z; , provides a statistic for all transcription factors ¢ in all patterns p,
it does not provide an estimate of significance. For that, we calculate Eqn. 1 for
permuted labels of genes in gene sets (i.e., 7 € Gpermuted). This provides a null
distribution for each pattern and for each number of genes in a gene set, as the
number of elements in Gpermuted Matches the number of elements in G. We then
calculate a p-value for each transcription factor in each pattern. This can be
done for both upregulation (i.e., higher than expected Z; ,) and downregulation
(i.e., lower than expected Z;,), which are stored in GSUpreg and GSDownreg
respectively.

For transcription factors, it can also be useful to convert the p-value to an
estimation of activity on a scale from —1 — 1, with —1 suggesting low activity
and +1 suggesting high activity. This is a simple rescaling of the p-values and
is stored in GSActEst.

Table 1 lists the p-values for upregulation (GSUpreg) of each transcription
factor in each pattern from pathway activity in GIST (Figure 3; [4]) and Table
2 for p-values of downregulation (GSDownreg). Finally, Table 3 lists the activity
estimate of GSActEst for these transcription factors.

> EGFRTF <- c¢("c.Jun", "NF.kappaB", "Smad4", "Sp1", "STAT3", "Elk.1",
+ "C-Myc H’ HE2F. 1 H, HAP. 1 H, HCREB H, IIFOXU H, llp53 Il)

> EGFRSigUp <- matrix(0, nrow=length(EGFRTF), ncol=5)

> row.names (EGFRSigUp) <- EGFRTF



colnames (EGFRSigUp) <- paste("p",1:5,sep="")
EGFRSigDown <- matrix(0, nrow=length(EGFRTF), ncol=5)
row.names (EGFRSigDown) <- EGFRTF
colnames (EGFRSigDown) <- paste("p",1:5,sep="")
EGFRSigAct <- matrix(0, nrow=length(EGFRTF), ncol=5)
row.names (EGFRSigAct) <- EGFRTF
colnames (EGFRSigAct) <- paste('"p",1:5,sep="")
for (i in 1:5) {
EGFRSigUp[,i] <- results$GSUpregl[i,EGFRTF]
EGFRSigDown[,i] <- results$GSDownreg[i,EGFRTF]
EGFRSigAct[,i] <- results$GSActEst[i,EGFRTF]
}

+ + + +VVVVVVVYV

pl p2 p3 p4 pb

c.Jun 033 0.00 0.02 0.80 0.04
NF kappaB 0.06 0.07 0.44 0.09 0.14
Smad4 0.65 0.47 0.02 0.92 0.30
Spl 032 0.85 0.13 0.08 0.13
STAT3 0.08 0.05 0.19 0.80 0.38
Elk.1 0.01 097 0.12 0.37 0.00
cMyc 0.26 0.99 0.52 0.07 0.00
E2F.1 047 098 0.27 0.56 0.10
AP.1 095 0.24 0.18 0.30 0.09
CREB 0.14 0.25 0.02 0.53 0.11
FOXO 0.31 0.52 0.27 0.02 0.92
p53 0.28 0.64 0.00 0.74 0.05

Table 1: p-values from GSUpreg for upregulation of each transcription factor in
each pattern from pathway activity in GIST (Figure 3; [4])

All files containing results and diagnostics from the CoGAPS analysis are
given in the directory ’GISTResults’ specified in the outputDir argument.
Specifically, CoGAPS creates the following files

> list.files('"GISTResults')

[1] "Amean.0.2593600142.txt"

[2] "AResults0.2593600142.Diagnostics.txt"
[3] "Asd.0.2593600142.txt"

[4] "GIST_GAPS_Figs_Amplitude.pdf"

[5] "GIST_GAPS_Figs_Patterns.pdf"

[6] "GSActEst.txt"

[7] "GSDownStat.txt"

[8] "GSUpStat.txt"

[9] "Pmean.0.2593600142.txt"



pl p2 p3 p4 pd

cJun 0.67 1.00 098 0.20 0.96
NF kappaB 0.94 0.93 0.56 091 0.86
Smad4 0.35 0.53 0.98 0.08 0.70
Spl 0.68 0.15 0.87 0.92 0.87
STAT3 0.92 095 0.81 0.20 0.62
Elk.1 099 0.03 0.88 0.63 1.00
cMyc 0.74 0.01 048 0.93 1.00
E2F.1 053 0.02 0.73 0.44 0.90
AP.1 0.05 0.76 0.82 0.70 0.91
CREB 0.86 0.75 0.98 0.47 0.89
FOXO 0.69 048 0.73 0.98 0.08
pb3 0.72 036 1.00 0.26 0.95

Table 2: p-values from GSDownreg for downregulation of each transcription fac-
tor in each pattern from pathway activity in GIST (Figure 3; [4])

[10] "PResults0.2593600142.Diagnostics.txt"
[11] "Psd.0.2593600142.txt"

The files with the suffix Diagnostics.txt contain diagnostics from the GAPS
analysis for the A and P matrices, based on the corresponding file prefix. We
note each file name also contains a random identifier to link files from A and P
matrices from a single GAPS decomposition. These files contain the parameters
of the GAPS decomposition and a list of diagnostics at a subset of the MCMC
iterations. This diagnostics notably include the x? value for the MCMC fit at
that iteration and number of atoms in the atomic domains for the corresponding
A and P matrices. The file also includes summary statistics for the x? value
(23009.5483206579) for mean chain estimates of the A and P matrices and av-
erage number of atoms in each of these matrices after the burn-in iterations.
Additionally, the results of the Z-score statistic indicating upregulation, down-
regulation, and activity of each transcription factor are provided in the files
GSUpStat.txt, GSDownStat.txt, and GSActEst.txt, respectively. Specifically,
these files contain the values from results$GSUpReg, results$GSDownreg, and
results$GSActEst variables. Although not provided here, CoGAPS may also
retain all the values of A and P with file names containing the same random
identifier created during the MCMC sampling with the suffix ChainValues.txt
as described in the User’s Manual.



pl p2 p3 p4 pd

cJun 034 099 096 -0.60 0.92
NF.kappaB 0.88 0.86 0.13 0.82 0.73
Smad4 -0.29 0.06 095 -0.85 0.39
Spl 037 -0.69 0.75 084 0.73
STAT3 083 090 0.63 -0.61 0.25
Elk.1 099 -094 0.77 0.27 0.99
cMyc 049 -0.99 -0.04 0.86 0.99
E2F.1 0.05 -096 046 -0.12 0.79
AP1 -089 053 064 039 0.82
CREB 0.72 050 096 -0.06 0.78
FOXO 0.39 -0.04 047 095 -0.84
p53 044 -0.27 1.00 -0.48 0.89

Table 3: Activity of each transcription factor from GSActEst in each pattern
from pathway activity in GIST (Figure 3; [4])
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