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APPENDIX
Existence and Uniqueness of the Estimates
The body of the paper takes for granted the existence and uniqueness
of the maximum likelihood estimates. These more subtle questions
can be tackled by reparameterizing. Before we do so, let us dismiss
the exceptional cases where a node has no edges. If this condition
holds for node i, then in the undirected graph model the value pi =
0 maximizes L(p) regardless of the values of the other parameters
pj . In the directed graph model, if node i has no outgoing arcs, then
likewise we should take pi = 0, and if i has no incoming arcs, then
we should take qi = 0.

The reparameterization we have in mind is pi = eri and qi = esi .
It is clear that the reparameterized loglikelihoods

L(r) =
∑
{i,j}

[xij(ri + rj)− eri+rj − lnxij !] (1)

L(r, s) =
∑
i

∑
j 6=i

[xij(ri + sj)− eri+sj − lnxij !] (2)

are concave. If an original parameter pi is set to 0, then we drop
all terms from the loglikelihood involving ri. If there are only
two nodes, then the loglikelihood L(r) is constant along the line
r1 + r2 = 0. In the directed graph model, if an original parameter
qj is set to 0, then we drop all terms from the loglikelihood
involving sj . With only two nodes, the loglikelihood L(r, s) is
constant on the subspace defined by the equations r1 + s2 = 0
and r2 + s1 = 0. Strict concavity and uniqueness of the maximum
likelihood estimates fail in each instance. Thus, assume that the
number of nodes m ≥ 3.

For strict concavity to hold, the positive semidefinite quadratic
form

−vtd2L(r)v =
∑
{i,j}

(vi + vj)
2eri+rj

must be positive definite. When the quadratic form vanishes, vi +
vj = 0 for all pairs {i, j}. If some vi 6= 0, then vj = −vi 6= 0
for all j 6= i. With a third node k distinct from i and j, we have
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vj + vk = −2vi 6= 0. This contradiction shows that v = 0 and
proves that L(r) is strictly concave. It follows that there can be at
most one maximum point.

In the directed graph model, it is clear that we can replace each ri
by ri + c and each sj by sj − c without changing the value of the
loglikelihood (1). In other words, the loglikelihood is flat along a
line segment, and strict concavity fails. If we impose the constraint
r1 = 0 corresponding to p1 = 1, then things improve. Consider the
semipositive definite quadratic form

−wtd2L(r, s)w =
∑
i

∑
j 6=i

(ui + vj)
2eri+sj

where w equals the concatenation of the vectors u and v. The
constraint r1 = 0 corresponding to p1 = 1 allows us to drop the
variable u1, and the term (u1 + vj)

2er1+sj of the quadratic form
becomes v2j e

sj . In order for the quadratic form to vanish, we must
have vj = 0 for all j. This in turn implies that all ui must vanish
for i 6= 1. Hence, L(r, s) is strictly concave under the proviso that
r1 = 0, and again we are entitled to conclude that at most one
maximum point exists.

Existence rather than uniqueness of a maximum point depends
on the property of coerciveness summarized by the requirement
lim‖r‖→∞ f(r) = ∞ for the convex function f(r) = −L(r).
Equivalently, each of the sublevel sets {r : f(r) ≤ c} is compact.
For a convex function f(r), coerciveness is determined by the
asymptotic function

f ′∞(d) = sup
t>0

f(td)− f(0)
t

= lim
t→∞

f(td)− f(0)
t

.

A necessary and sufficient condition for all sublevel sets of f(r) to
be compact is that f ′∞(d) > 0 for all vectors d 6= 0 (Hiriart-Urruty,
2004). In the present circumstances,

f ′∞(d) = sup
t>0

∑
{i,j}

[et(di+dj) − 1

t
− xij(di + dj)

]
.

If any sum di + dj > 0, then it is obvious that f ′∞(d) > 0.
Thus, we may assume that all pairs satisfy di + dj ≤ 0. With this
assumption in place, if some xij > 0, then the assumption di +
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dj < 0 also gives f ′∞(d) > 0. Hence, we may also assume that
di + dj = 0 for all pairs with xij > 0. If all dj ≤ 0, suppose
di < 0. Then there is at least one j with xij > 0. But this entails
di+dj = 0 and contradicts our assumption that dj ≤ 0. Finally, let
us assume some di > 0. Then dj < 0 for all j 6= i. If xjk > 0 for
a pair {j, k} with j 6= i and k 6= i, then dj + dk = 0 and either dj
or dk is positive. This is a contradiction. Hence, all edges involve i.
Because all nodes lacking edges are omitted from consideration, all
nodes are connected to i. In other words, the only way the condition
f ′∞(d) > 0 can occur with d 6= 0 is for i to serve as a hub in the
narrow sense of attracting all edges.

A hub formation is incompatible with coerciveness. Indeed,
suppose i is the hub. If we take ri = t > 0 and all rj = −t for
j 6= i, then the loglikelihood (1) becomes

L(r) =
∑
j 6=i

[xij(t− t)− et−t − lnxij !]−
∑

{j,k}:j 6=i,k 6=i

e−2t,

which is bounded below as t → ∞. A two-node model obviously
involves two hubs.

Hubs also supply the only exceptions to coerciveness in the
directed graph model. In proving this assertion, we let I be the set of
nodes with incoming arcs and O be the set of nodes with outgoing
arcs. The parameter ri is defined provided i ∈ O, and the parameter
sj is defined provided j ∈ I . Suppose i is a hub with both outgoing
and incoming arcs. Set ri = 0, si = t, sj = 0 when j ∈ I \ {i},
and rj = −t when j ∈ O \ {i}. The loglikelihood

L(r, s) =
∑

j∈I\{i}

[xij0− e0 − lnxij !]

+
∑

j∈O\{i}

[xji(−t+ t)− e−t+t − lnxij !]

−
∑

j∈O\{i}

∑
k∈I\{i,j}

e−t

remains bounded as t tends to∞. Thus, L(r, s) fails to be coercive
in this setting.

In proving the converse for a directed graph, we write the
asymptotic function as

f ′∞(c,d) = sup
t>0

∑
i∈O

∑
j∈I\{i}

[et(ci+dj) − 1

t
− xij(ci + dj)

]
.

A pair (i, j) is said to be active provided i ∈ O and j ∈ I . If the
loglikelihood is not coercive, then there exists a vector (c,d) 6= 0
with f ′∞(c,d) = 0, where c is the vector of defined ci and d is the
vector of defined dj . It suffices to show that f ′∞(c,d) = 0 for some
nontrivial (c,d) is impossible unless the graph is organized as a hub
with both incoming and outgoing arcs.

Without loss of generality, we can assume that x12 > 0;
otherwise, we relabel the nodes so that some arc starts at node 1
and ends at node 2. This choice also allows us to eliminate the
propensity r1 and set c1 = 0. If ci + dj > 0 for an active pair
(i, j), then it is obvious that f ′∞(c,d) > 0. Furthermore, if xij > 0
and ci + dj < 0, then we also have f ′∞(d) > 0. Thus, we may
assume that all active pairs (i, j) satisfy ci + dj ≤ 0, with equality
when xij > 0. Given these restrictions, the assumption c1 = 0
requires that dj ≤ 0 for all j 6= 1 in I . In view of our assumption

x12 > 0, we find that d2 = 0. If k 6= 2 is in O, the restriction
ck + d2 ≤ 0 implies that ck ≤ 0. Thus, the only two components
that can be positive are d1 and c2. Suppose the pair (2, 1) is active.
The inequality c2 + d1 ≤ 0 implies that if either component d1 or
c2 is positive, then the other component is negative. Similarly, if
xkl > 0 for nodes k 6= 2 and l 6= 1, then the equality ck + dl = 0
and the nonpositivity of ck and dl yield ck = dl = 0.

If we can show that c2 and d1 are nonpositive when defined,
then all components of (c,d) will be nonpositive. This state of
affairs actually implies that all components are 0, contradicting our
assumption that (c,d) is nontrivial. To prove this claim, consider a
defined component ci. Because there exists a node j with xij > 0,
the equation ci + dj = 0 entails ci = 0 when all components of
(c,d) are nonpositive. Likewise, for every defined dj , there exists a
node i with xij > 0. The equation ci + dj = 0 now entails dj = 0
when all components of (c,d) are nonpositive.

The proof now separates into cases. In the first case, no other arcs
impinge on node 1 or node 2 except possibly the arc 2 → 1. If
the arc 2 → 1 does not exist, d1 and c2 are undefined, and we are
done. If 2 → 1 exists, then to a avoid a hub with both incoming
and outgoing arcs, there must be a third arc k → l distinct from
1 → 2 and 2 → 1. We have already observed that ck = dl = 0
for an arc k → l with k 6= 2 and l 6= 1. Therefore, the requirement
ck + d1 ≤ 0 entails d1 ≤ 0. Similarly, the requirement c2 + dl ≤ 0
entails c2 ≤ 0.

In the second case, component d1 is defined and component c2 is
undefined. To prevent node 1 from being a hub with both incoming
and outgoing arcs, there must be an arc k → l with k and l different
from 1. Because c2 is undefined, k 6= 2. Hence, again ck = dl = 0.
The requirement ck + d1 ≤ 0 now implies d1 ≤ 0.

In the third case, component d1 is undefined and component c2
is defined. To prevent node 2 from being a hub with both incoming
and outgoing arcs, there must be an arc k → l with k and l different
from 2. Because d1 is undefined, l 6= 1. Hence, again ck = dl = 0.
The requirement c2 + dl ≤ 0 now implies c2 ≤ 0.

In the fourth and final case, both components d1 and c2 are
defined. The hub hypothesis fails if there exists an arc k → l with k
and l both differing from 1 and 2. As noted earlier, this leads to the
conclusions d1 ≤ 0 and c2 ≤ 0. If no such arc exists, then consider
arcs k → 1 and 2 → l. If the only possible k is k = 2, then node
2 is a hub with both incoming and outgoing arcs. Assuming k 6= 2,
we have ck ≤ 0. The requirement ck+d1 = 0 now implies d1 ≥ 0.
In similar fashion, if the only possible value of l is 1, then node 1 is
a hub with both incoming and outgoing arcs. Assuming l 6= 1, we
have dl ≤ 0. The requirement c2 + dl = 0 now implies c2 ≥ 0.
Unless d1 = c2 = 0, the two conditions d1 ≥ 0 and c2 ≥ 0 are
incompatible with our earlier finding that d1 > 0 implies c2 < 0
and vice versa.

In summary, we have found that the condition f ′∞(c,d) = 0
and the assumption of no hub with both incoming and outgoing arcs
imply that (c,d) = 0. Thus, the strictly convex function f(r, s) =
−L(r, s) is coercive under the no hub assumption and attains its
maximum at a unique point.

Convergence of the MM Algorithms
Verification of global convergence of the MM algorithms hinge on
five properties of the objective function L(p) and the iteration map
M(p):
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(a) L(p) is coercive,

(b) L(p) has only isolated stationary points,

(c) M(p) is continuous,

(d) A point is a fixed point of M(p) if and only if it is a stationary
point of L(p),

(e) L[M(p)] ≤ L(p), with equality if and only if p is a fixed
point of M(p).

See the reference (Lange, 2004) for full details.
Verification of these properties in the multigraph models is

straightforward. Coerciveness has already been dealt with under the
reparameterization pi = eri and the no hub assumption. Because
the reparameterized loglikelihood L(r) is strictly concave, there
is a single stationary point in both the original and transformed
coordinates. Inspection of the iteration map (Equation 3 in paper)
shows that it is continuous. It does involve a division by a
denominator that could tend to 0, but this contingency is ruled
out by coerciveness. The fixed point condition M(p) = p occurs
when the surrogate function satisfies the equation ∇g(p | p) =
0. The identity ∇L(p) = ∇g(p | p) at every interior point
of the domain of the objective function shows that fixed points
and stationary points coincide. Finally, the strict concavity of the
surrogate function g(p | pn) demonstrates that g(pn+1 | pn)
is strictly larger than g(pn | pn) unless pn+1 = pn. Because
g(p | pn) minorizes L(p), this ascent property carries over to
L(p). With minor notational changes, the same arguments apply
to the directed graph model.

Log P-Value Approximations
Since the extreme right-tail probabilities of the Poisson distribution
lead to computer underflows, we must resort to approximation. Let
the Poisson random deviateX have mean λ. For nmuch larger than
λ, we find that

Pr(X ≥ n) =

∞∑
k=n

e−λλk

k!

=
e−λλn

n!

∞∑
k=0

λkn!

(n+ k)!

≤ e−λλn

n!

∞∑
k=0

(
λ

n

)k

=
e−λλn

n!

(
1

1− λ
n

)

=
e−λλn

(n− 1)!

1

n− λ .

Because n is large, we can approximate (n − 1)! by Stirling’s
formula

(n− 1)! ≈
√
2πnn−1/2e−n.

This allows us to take logarithms of Pr(X ≥ n) ≈
en−λλn√

2πnn−1/2(n−λ) in the construction of our tables.
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APPENDIX TABLES AND FIGURES

Table 1. Convergence results for each of the 5 real datasets. Note that
convergence was defined as a change in loglikelihood of less than 10−8

percent of the previous loglikelihood. Time given is for a dual processor
computer running at 2.4 GHz. Time is given in seconds (s).

Dataset # Nodes # Edges # Iterations Time(s)

Letter Pairs 27 503,951 21 42
C. Elegans 281 6,417 23 9

Protein Ints. 9,213 88,456 18 741
Word Pairs 10,789 137,338 24 1,415

Rad. Hybrid 20,145 825,551,643 29 14,903
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Fig. 1. Graph of C. Elegans neural network with a p-value of 10−6.
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Fig. 2. Graph of the Radiation Hybrid network. In this graph, node size is proportional to a node’s estimated propensity. Also, the darker the edge, the more
significant the connection; red lines highlight the most significant connections.
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