Online Supplementary Material:

Figure S1. A 3' bias is observed in the Solexa sequence reads. The percentage of sequence reads mapped to the coding region of all genes, with respect to the position from the stop codon, in *prp2.1* mutant and the published wild type (1).

Figure S2. Intron Py-tract strength did not correlate with U2AF insensitivity. A histogram

comparing the Py-tract length throughout the intron between U2AF-sensitive and -insensitive introns, (t-test *P*-value of 0.03).

Figure S3. Single-nucleotide distribution of A/U % in different organisms. Single-nucleotide distribution of A/U% (Y-axis) in the intron and flanking exon sequences, indicated by the coordinates in relation to the splice sites. Rectangles represent exons and lines represent intron along the X-axis. Introns from four organisms (*S. pombe, A. thaliana, C. elegans*, and *H. sapiens*) were analyzed. All annotated introns from Sanger GeneDB at least 33 nts in length were used for *S. pombe*. NCBI annotated cis-spliced GT-AG introns were used for other organisms.

Figure S4. The U2AF59 levels apparently remain stable upon heat inactivation in *prp2.1.* **A)** Western Analysis. Comparison of U2AF59 protein levels between wild type and *prp2.1* mutants. U2AF levels from crude lysates of *S. pombe* strains *spCR1* (endogenous U2AF), *prp2+* (plasmid expressed U2AF) and *prp2.1* grown for 0 and 2 hrs non permissive (37° C) temperatures were determined with anti-prp2 antibodies. The plasmid-expressed gst-RRM123 served as a control is shown. The anti-prp2 delta-RS polyclonal antibodies were used at a 1:500 dilution. **B)** Protein staining. A fraction ($1/10^{\text{th}}$) of the lysates used for Western analysis was stained for comparison of the protein levels.

Primer	SEQUENCE		
atp3 a F	AACGCTAACTCAGGCGTCTC		
atp3 a R	TCTTTTAGCGTTGCCTCACA		
Bp cn inv F	GCAAATACTAACAACAAATGTAGGAAAAGAGAG		
Bp cn inv R	ACTAATAATCTCTTAAAAACACTTACCTTCAGAAGC		
Bp15cd5p3p			
invF	TTCTAACCCTTTTTTAAGACTTTTGG		
Bp15cd5p3p	TTCCCATGCATCCGTTCTTAAAACACTTACCGAACACAATTTGATCGAT		
IIIVK			
Bp30 Cn inv R	САААААТС		
Bpb1 F Nde	GCGCATATGGCTGAATTCAAGGTCAGTAGGG		
Bpb1 R Bam	GCAGGATCCCTCATTCCATTTGCATCAGG		
bpcd inv F	CAAATTCTAACCCTTTTTTAAGACTTTTGG		
bpcd inv F cdc	CAAATTCTAACCCTTTTTTAAGACTTTTGG		
	CACTAATAATCTCTTAAAACACTTACCGAACACAATTTGATCGATTATT		
bpcd inv R	С		
brad inv R ada	CACTAATAATCTCTTAAAACACTTACCGAACACAATTTGATCGATTATT		
Bred invE			
Bpcd invE hph			
Bred invP			
Bpcd InvR			
Cd15 Bp15 Cd			
inv R	C		
Cd5p inv R	CCATGCATCCGTCAAGTAAAAACTTAC		
Cd7 Bp23 Cd	CACTAATAATCTCTTAAAAAACTTACCGAACACAATTTGATCGATTATT		
inv R	С		
Cdbp inv F	GCAAATTATTAATATTTTTAGACTTTTGGATATTTTACATGCTGAATC		
cdbp invR	CCCATGCATCCGTCAAGTAAAAACTTACCAGTAGACCCTACTGACCTTG		
cdmidR	CAAAGTTTTATCAATGTAAACATTTCC		
Cn7 Bp23 Cn			
inv R	ACTAATAATCTCTTTAAAATCCCCCACCTTCAGAAGCATTAGGTAAC		
Cnbp clone F	CCTTATTGG		
cnbp inv F	САТТССАААТТАТТАТТАТТТТАССААААСАСАС		
cnbp inv R			
Cox13 c F	GGTGGACCAGCATTGATATTG		
Cox13 c R			
Cwf25 F Nde	GCGCATATGTGGGTGGTGGTGGAGATCTAAATATG		
Cwf25 R Bam	GCAGGATCCGCTCGACTCGCTTCATCTCT		
Cvp4 F Nde	GCGCATATGGGACACCATGTTGTTTTTTGG		
Cvp4 R Bam	GCAGGATCCTCACGGTTGTCAGTCTCAGC		
Diml a F	TTTTTACCTCATTTACATTCTGGA		
Dim1 a R	GATAAAATTGCTTGATCAACGTG		
Dim1 b F	GCACGTTGATCAAGCAATTTT		
Dim1 b P	ССАААТСБААТБАСААССАА		

Supplementary Table 1. Oligonucleotides used for the study.

Dim1_c F	AAGAGCGCTTGGTTGTCATT		
Diml_c R	AGCCATGTTGACGACCTTTT		
Diml d F	AGTGGACATTGACGAAGTTCC		
Dim1_d R	TTGTAGTTCTGTCATAAAGCTCGT		
Fim1_b F	TGATTACAATCTTGTTACCGATGG		
Fiml b R	GATTACGGCACCCAACTTTC		
gar1 b	TGGTTCATAGGGCCAAAGAC		
garl_b F	CATGCACGATTGTGAAGGAG		
grx1 c F	GAACAACGGTGATGAGATTCAA		
grx1_c R	ACCAACATGCTTTTGGTGAA		
mfm2_a F	TGGACTCCATTGCAACTAACA		
mfm2_a R	CCTTGGCAAAAAGATTCCAG		
nmt polyA R	AAACCCTAGCAGTACTGGCAAG		
Paal_f F	AAGCCATCCAAATTATTTATACCG		
Paal_f R	TCCAAAGTTGGAAGAATTTGTTT		
Pgp2_a F	GGTTTGTCCAATGCACCTTC		
Pgp2_a R	CGGAAAATGAACAATCCATACC		
Png2 F Nde	GCGCATATGTTTGAAAGAGATCGATGCACA		
Png2 R Bam	GCAGGATCCTCGCTCACATCTTTCTTCTCC		
Prep1F	CACTTTCTGACTTATAGTCGCTTTGTTAAATCATATG		
ptp4_a F	TGAAATTCCCCGTAAAGCAC		
ptp4_a R	AAGCTGGCCAGTTAAAACGA		
Rhbl_a F	GAATTGCTGTTCTTGGCAGTC		
Rhbl_a R	GTTGGATAATACGATTCAACGAAA		
Rhb1_b F	TTCGTGACAAGATATTGAATCACA		
Rhb1 b R	CCAATGCTTTTCCCTCTTCA		
rpl31_a F Nde	GCGCATATGGCCATCAAGGAAATTGTTGC		
rpl31_a R Bam	GCAGGATCCTACCACGCTTCCAAACTTCC		
rpl35a_a F	ATTTGGGTAAGCGTGTTTGC		
rpl35a_a R	ACCGGAGTTTCCATGAGGAC		
Sar1_a F	TAGATAACGCCGGAAAGACC		
Sar1_a R	ACGTTGCCAATAGCCAGTTC		
sla1_a	GGGTAAGTTGGTGTCCGAAA		
sla1_a F	CCGAGGAAGCTGGAAAAGTA		
Spac6f6.05_a F	GGCTTTAACTCAACAGGAATTACAA		
Spac6f6.05_a R	TGGAGAAGCAAAACTCGAGAA		
Spbc32H F Nde	GCGCATATGCAAAGAATGGAGAATTAGTTCGAGA		
Spbc32H R Bam	GCAGGATCCCAATGATAACATGGTAGGGAGGT		
spi1_b F	TGGCCTTCGTGATGGTTACT		
spi1_b R	TCACAAACACGGACAAGATCA		
srp2_9 F	TGACGAGCCTTAATGGTGAA		
srp2_9 R	GTGGAGAACGTGAACGGAAG		
syb1_a F Nde	GCGCATATGGTGGGGATTATGCGTGAAAA		
syb1_a R Bam	GCAGGATCCTCTTCTTGCGAACACGATTG		
vma3_c F	CCAAAGCTGGTGTCGGTATT		
vma3_c R	CAGCCATAACAAGGAATGG		

Supplementary Table 2. 5' splice site bias in U2AF-insensitive versus U2AF-sensitive

introns. The two best 5' splice site sequences in terms of complementarity to the U1 snRNA (2) and the consensus (3) is GUAAGU and GUAUGU. Also shown are the versions including the consensus guanosine from the upstream exon.

	U2AF-	U2AF-
	sensitive	insensitive
5' splice site motif	introns %	introns %
GUAAGU	18.9	46.2
GUAUGU	9.4	22.6
G GUAAGU	2.8	24.5
G GUAUGU	3.7	20.8

- Wilhelm, B. T., S. Marguerat, S. Watt, F. Schubert, V. Wood, I. Goodhead, C. J. Penkett, J. Rogers, and J. Bahler. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at singlenucleotide resolution. Nature 453:1239-43.
- 2. Alvarez CJ, Romfo CM, Vanhoy RW, Porter GL, Wise JA. 1996. Mutational analysis of U1 function in Schizosaccharomyces pombe: pre-mRNAs differ in the extent and nature of their requirements for this snRNA in vivo. RNA 2:404-18.

3. Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy

JW. 2004. Introns and splicing elements of five diverse fungi. Eukaryot Cell. 3:1088-100.