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Pseudomonas aeruginosa is the predominant pathogen in patients with cystic fibrosis (CF). To study the
possibility of preventing lung inflammation and decreasing the progression of the infection by vaccination, we
have developed a rat model of chronic P. aeruginosa lung infection. Rats were immunized with P. aeruginosa
whole-cell sonicates, O-polysaccharide toxin A conjugate, an alginate-toxin A conjugate, or native alginate.
Control animals received sterile saline or incomplete Freund's adjuvant (IFA). The macroscopic (mean score,
2.4 versus 2.7 to 3.2) (P < 0.05) and microscopic (mean score, 2.0 versus 2.1 to 2.8) pathologic abnormalities
were less severe in the control rats injected with sterile saline than in the immunized rats and the IFA group.
The more severe lung abnormalities observed in immunized rats could be due to the result of immune
complex-mediated lung tissue damage. The histopathologic results in the saline control rats were characterized
by acute inflammation dominated by numerous polymorphonuclear leukocytes surrounding the alginate beads
(microcolonies), as in CF patients. In contrast, the inflammatory response in the IFA group and in the
immunized rats had changed from an acute-type inflammation to a chronic-type inflammation dominated by
mononuclear leukocytes and scattered granulomas. Cross-reacting antibodies were induced by the two alginate
vaccines, and most immunized animals developed a significant (P < 0.001) antibody titer elevation (in
enzyme-linked immunosorbent assay) of the immunoglobulin M (IgM), IgG, and IgA classes against the
homologous antigens. The bacterial clearance was significantly (P < 0.05) more efficient in most immunized
rats than in the control rats given sterile saline. The present study shows that none of the vaccines could
completely prevent chronic lung inflammation 4 weeks after challenge. However, the changed pathologic
condition in immunized rats to a chronic-type inflammation might be of great benefit in future management
of CF patients since the developing lung tissue damage has been shown to be caused by polymorphonuclear
leukocyte-released elastase.

During childhood, most cystic fibrosis (CF) patients have
recurrent lung infections with Staphylococcus aureus and Hae-
mophilus influenzae (31). With increasing age, chronic lung
infections with mucoid Pseudomonas aeruginosa become more
prevalent, and up to 80% of all adult CF patients become
chronically infected (52). Chronic lung infection in CF patients
is manifested as an endobronchiolitis (2), with the bacteria
located as microcolonies without penetrating the periluminal
tissue (41). At this stage P. aeruginosa is rarely eliminated
despite a pronounced antibody response to numerous antigens
(18, 40) and an abundance of polymorphonuclear leukocytes
(PMNs) in the bronchial secretions (37).

Previously (34) we described a chronic lung infection in-
duced in normal rats by intratracheal administration of mucoid
P. aeruginosa embedded in seaweed alginate. The pathological
and serological responses were similar to those observed in
patients with CF (34). Alginate is a major virulence factor
which provides protection from the host defense mechanisms
by interfering with the clearance of P. aeruginosa as a result of
its antiphagocytic properties (45, 52, 64). It has been shown
that a subpopulation of antibodies against alginate are able to
promote the uptake and killing of mucoid P. aeruginosa by
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human PMNs (1). Most commonly the initial colonizing strains
in CF patients are nonmucoid, and a shift to a mucoid
phenotype occurs with time (28). However, evidence that the
early colonizing strains also produces small amounts of alg-
inate has accumulated (54, 57). Furthermore, it has been found
that elevated levels of opsonic anti-alginate antibodies corre-
late with lack of detectable P. aeruginosa lung infection in a
group of older CF patients (58). In this study we have used
native alginate and a depolymerized alginate vaccine which is
covalently coupled to toxin A (10, 14). This has previously
elicited antibodies which were cross-reactive with heterologous
alginate (6) and which could be of importance in trying to
prevent the subsequent chronic lung infection.

Lipopolysaccharide (LPS) plays an important role in the
virulence of P. aeruginosa by activating complement and induc-
ing production of cytokines (tumor necrosis factor, interleu-
kin-1) (15, 19). Elevated levels of antibodies to LPS and toxin
A have been found to correlate with survival from P. aerugi-
nosa bacteremia (10, 60). It has been shown that in CF
patients, infection-induced anti-LPS antibodies against P.
aeruginosa possessed affinities at least 100-fold less than those
induced by vaccination with an octavalent O-polysaccharide
toxin A (0-PS toxin A) vaccine (5). By using a chronic lung
infection model in rats (68), it has been shown that P.
aeruginosa toxin A-positive mutant strains causes parenchymal
changes and bronchial inflammation, indicating the impor-
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tance of this virulence factor. The O-PS toxin A vaccine (63),
which in CF patients was able to raise high levels of antibodies
to LPS and toxin A, was therefore included in the present
study. In a recent study (36) we found that subcutaneous
immunization with P. aeruginosa whole-cell sonicate on days 0,
14, and 21 elicited high immunoglobulin G (IgG) and IgA
antibody responses in serum against P. aeruginosa antigens
when measured on day 28.

In view of the above findings, the purpose of this work was
to study whether antibodies induced by the vaccines P. aerugi-
nosa whole-cell sonicate, O-PS toxin A conjugate, an alginate
toxin A conjugate, O-PS toxin A conjugate plus alginate toxin
A conjugate, or native alginate could prevent chronic lung
inflammation or minimize the inflammatory response which in
CF is dominated by PMNs, when given subcutaneously before
challenge with P. aeruginosa in alginate beads in our rat model
of chronic P. aeruginosa lung infection. Since PMN elastase
plays such a crucial role in the tissue damage in lungs of CF
patients (26, 31, 65, 66), prevention of PMN-dominated in-
flammation might be of great advantage (46, 47).

MATERMILS AND METHODS

Animals. Seven-week-old female Sprague-Dawley rats in
groups of 20 to 46 weighing approximately 170 g were used
(34-36).

Challenge strain. P. aeruginosa PAO 579, which stably
maintains a mucoid phenotype and is International Antigenic
Typing System (IATS) 0:2/5 (kindly provided by J. R. W.
Govan, Department of Bacteriology, Medical School, Univer-
sity of Edinburgh, Edinburgh, United Kingdom), was used (22,
27). The behavior of this strain in the chronic-infection model
has been previously described (34, 55).

Immobilization of P. aeruginosa in spherical alginate beads.
Briefly, 1 ml of the P. aeruginosa bacterial culture was mixed
with 9 ml of seaweed alginate (guluronic acid content, 60%)
and forced once with air through a cannula into a solution of
0.1 M CaCl2 in 0.1 M TRIS-HCI buffer (pH 7.0) (34, 55). The
suspension was adjusted to yield 109 CFU/ml and confirmed by
colony counts.

Vaccines. We used the following control and vaccine groups.
Controls consisted of (i) 0.1 ml of 0.15 M sterile NaCl (control
I) and (ii) 0.1 ml of incomplete Freund's adjuvant (IFA)
(Tuberculin Department, State Serum Institute, Copenhagen,
Denmark) (control II). Vaccines consisted of (i) sonicated P.
aeruginosa PAO 579, with a protein concentration of the
antigen preparation of 19.7 g/liter (44) (each animal was given
0.1 ml of the vaccine mixed with IFA yielding 100 ,ug of protein
per vaccination); (ii) P. aeruginosa O-PS toxin A (12, 16) (the
eight P. aeruginosa serotypes represented in the vaccine are
Fisher-Devlin immunotypes IT-1 [Habs 0:6], IT-2 [Habs
0:11], IT-3 [Habs 0:2/5], IT-4 [Habs 0:1], IT-5 [Habs 0:10],
IT-7 [Habs 0:2/5], and Habs-3 and Habs-4 [62]) (each animal
received 0.25 ml of vaccine containing 25 jig of O-PS toxin A
from each serotype); (iii) depolymerized P. aeruginosa alginate
(from strain 3064) covalently coupled to toxin A (D-ALG toxin
A) (13, 14) (each animal received 0.25 ml of vaccine containing
25 jig of alginate and 77.5 jig of toxin A); (iv) 0.25 ml of O-PS
toxin A plus 0.25 ml of D-ALG toxin A; and (v) purified
alginates from P. aeruginosa 6680 and 8839 mixed with IFA
(53) (each animal received 0.2 ml of vaccine containing 140 jig
of alginate). Vaccines used in vaccine groups (ii) to (iv) were
adsorbed to Al(OH)3, whereas the vaccines in control group
(ii) and vaccine groups (i) and (v) were mixed with IFA.
Immunization and challenge procedures. On days 0 and 14,

each of the seven groups of rats were subcutaneously immu-

nized with one of the above-mentioned vaccines. On day 28 all
rats were intratracheally challenged with 0.1 ml of P. aerugi-
nosa (109 CFU/ml) in alginate beads.

Blood samples. On day 0, blood was drawn from 20 ran-
domly chosen rats, and this pool was used as reference day 0
pool in all the enzyme-linked immunosorbent assays (ELISA).
On day 28, 1.5 ml of blood was drawn from the right orbital
plexus from all rats as previously described (34, 35). All
animals were sacrificed on day 56 (4 weeks after challenge).

Macroscopic description of the lungs. After removal, all
lungs were macroscopically assigned to one of four groups,
according to the severity of the infection: 1, normal; 2, swollen
lungs, hyperemia, small atelectasis (1 by 1 mm); 3, adherences,
small hemorrhages, small abscesses (to 1 by 2 mm), atelectasis
(2 by 3 mm); 4, adherences, hemorrhages, abscesses (>1 by 2
mm), and atelectasis (>3 mm) (34). The scoring was per-
formed in a blinded fashion to avoid bias.

Histopathologic testing. Lungs from 10 to 36 animals in each
group were prepared for histologic examination. The lower
section of the left lung lobe was fixed in formalin, embedded in
paraffin wax, cut into 5- to 10-jim-thick sections, and stained
with hematoxylin and eosin. Microscopically the sections were
assigned to one of four groups according to the severity of the
inflammation: I, normal; II, mild focal inflammation; III,
moderate to severe focal inflammation with areas of normal
lung tissue; IV, severe inflammation to necrosis and severe
inflammation throughout the lung (34). The cellular changes
were assigned to groups according to acute and chronic
inflammation by using a scoring system based on the percent-
age of PMNs and mononuclear cells in the inflammatory foci:
.90% PMNs and -10% mononuclear cells, 50 to 90% PMNs
and 10 to 50% mononuclear cells, 10 to 50% PMNs and 50 to
90% mononuclear cells, and -10% PMNs and -90% mono-
nuclear cells. Acute inflammation is defined as inflammatory
infiltrates dominated by neutrophil granulocytes (.90%).
Chronic inflammation is defined as predominance of mononu-
clear cells (.90%) (lymphocytes and plasma cells) and pres-
ence of granulomas.

Bacteriologic testing. The first 10 lungs from each group
were prepared for quantitative bacteriologic examination as
follows. The lungs were mixed with 3 ml of sterile phosphate-
buffered saline and homogenized in a blender (34). Appropri-
ately diluted samples were plated to determine the number of
CFU. The limit of detection was <100 organisms per ml of
lung homogenate.

Purification of P. aeruginosa LPS. LPS was purified from P.
aeruginosa PAO 579 0:2/5 as previously described (19, 21).

ELISAs. Quantitation of anti-P. aeruginosa PAO 579 soni-
cate antibodies of the IgM, IgG, and IgA classes in serum and
IgG and IgA antibodies against P. aeruginosa alginate (6680 +
8839) were carried out by means of ELISAs as previously
reported (34). Titers, expressed as ELISA units, were obtained
by dividing the mean optical density values of the samples with
the mean optical density of an internal standard expressing
absorbance units between 0.30 and 0.40.
For determination of IgM, IgG, and IgA antibodies against

P. aeruginosa toxin A, P. aeruginosa PAO 579 LPS, and P.
aeruginosa 3064 alginate, and IgM antibodies against P. aerugi-
nosa 6680 + 8839, we used flat-bottomed 96-well microdilution
plates (Microwell; NUNC, Roskilde, Denmark). Serum dilu-
tions varied between 1:40 and 1:320, and 0.1 to 2.0% goat
serum was added to eliminate nonspecific binding. For deter-
mination of IgM, IgG, and IgA specific antibodies, dilutions of
peroxidase-conjugated goat anti-rat IgM, IgG, and IgA be-
tween 1:2,000 and 1:10,000 were used.

Analytic variation of ELISA. The intraplate same-day and
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day-to-day variations in the ELISA results, which have not
been reported before, were determined by testing in each assay
10 antibody-positive serum samples representing a wide range
of antibody levels as previously described (34). By using 95%
confidence limits (CL), the intraplate variation coefficient the
same day was 18% (95% CL, ±25%) for the P. aenrginosa
toxin A IgM assay, 3% (95% CL, ±4%) for the IgG assay, and
6% (95% CL, ±8%) for the IgA assay, whereas the day-to-day
variation was 50% for IgM (95% CL, ±75%), 18% for IgG
(95% CL, ±25%), and 11% for IgA (95% CL, ±15%).
The intraplate variation coefficient on the same day was 19%

(95% CL, ±26%) for the P. aeruginosa PAO 579 LPS IgM
assay, 12% (95% CL, ± 17%) for the IgG assay, and 9% (95%
CL, ± 12%) for the IgA assay, whereas the day-to-day variation
was 28% for IgM (95% CL, ±39%), 54% for IgG (95% CL,
±75%) and 8% for IgA (95% CL, ±+11%).
The intraplate variation coefficient on the same day was 3%

(95% CL, ±4%) for the P. aeruginosa 3064 alginate IgM assay,
4% (95% CL, ±6%) for the IgG assay, and 12% (95% CL,
± 16%) for the IgA assay, whereas the day-to-day variation was
15% for IgM (95% CL, ±21%), 30% for IgG (95% CL,
±42%), and 23% for IgA (95% CL, ±32%).
The intraplate variation coefficient on the same day for the

P. aeruginosa alginate 6680 + 8839 IgM assay was 4% (95%
CL, ±6%), whereas the day-to-day variation was 14% (95%
CL, ± 19%).

Statistical analysis. We chose a 5% level of significance. The
x2 test for categorical data was used. Wilcoxon's signed-rank
test for pair differences and the Mann-Whitney U test for
unpaired differences were used to compare continuous data.
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RESULTS

Immunogenicity. The IgM, IgG, and IgA antibody responses
measured on day 28 in the controls against the antigens used
for the ELISA were in most cases significantly (P < 0.01) lower
than the antibody responses obtained in immunized rats
(Tables 1 to 5). The development of antibodies in the control
groups was first induced after challenge with alginate beads on

day 28; however, thereafter a significantly (P < 0.05) increased
IgM, IgG, and IgA antibody response could be demonstrated
against most antigens (Tables 1 to 5).
The highest titers against P. aeruginosa alginates 6680 +

8839 and 3064 could be demonstrated in the rats immunized
with the homologous alginate (P < 0.05). However, a signifi-
cant (P < 0.05) number of cross-reactive IgM, IgG, and IgA
antibodies were induced by the two alginate vaccines against
the heterologous alginate (Tables 1 and 4).
The PAO 579 sonicate vaccine induced significant (P =

0.001) IgM, IgG, and IgA antibody responses on day 28 against
P. aeruginosa 6680 + 8839 alginate, the homologous sonicate,
and LPS when compared with the responses on day 0. The rats
immunized with the O-PS toxin A vaccine was expected to be
able to induce cross-reactive LPS antibodies since 0 groups 2
and 5 are both present in the vaccine and the PAO 579 LPS
used as antigen in the ELISA (43); however, only traces of
cross-reacting LPS antibodies could be measured after immu-
nization (Tables 2 and 5).
The highest anti-toxin A antibody response could be mea-

sured in animals immunized with the toxin A conjugated
vaccines. A high and significant (P = 0.001) toxin A IgG
antibody response was induced by both toxin A conjugated
vaccines when compared with the other vaccine groups. In-
creased anti-toxin A IgG and IgA (P < 0.05) titers were

observed in rats vaccinated with toxin A-containing vaccines
after challenge when compared with the other immunization
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TABLE 6. Lethality of challenge and condition of the lungs 28 days after challenge with P. aeruginosa alginate beads

Scoring of lungs according to severity of inflammation % of lungs with
Control or vaccine % Lethality P. aeruginosa'

group (no. killed/total no.) Macroscopic Microscopic %PMN/MC/Gb (no. infected/
meana mean total no.)

NaCl (control I) 5 (1/20) 2.4 2.0 -90/<10/- 67 (6/9)
IFA (control II) 0 (0/46) 3.0* 2.1 .1/090/+ 10 (1/10)*
PAO 579 sonicate 0 (0/37) 3.2* 2.7 .101.90/+ 40 (4/10)
O-PS toxin A 0 (0/36) 2.8 2.5 .10/-90/+ 0 (0/10)*
D-ALG toxin A 0 (0/36) 2.7 2.8 .101.90/+ 0 (0/10)*
O-PS + D-ALG toxin A 3 (1/35) 2.7 2.3 .101/90/+ 20 (2/10)*
P. aeruginosa alginate 6680 + 8839 0 (0/37) 2.7 2.7 <10/190/+ 0 (0/10)*

a Statistical significance: *, P < 0.05 compared with sterile NaCl control group.
b PMN, neutrophil granulocytes; MC, mononuclear cells (lymphocytes and plasma cells); G, granulomas (see Materials and Methods).

groups. The antibody responses induced by the combined
vaccination were lower with respect to each antigen compo-

nent (toxin A IgG and IgA; P = 0.0001) than were the antibody
responses induced by each of the vaccines when administered
alone (Table 3).

Lethality. Two rats, one in the sterile saline group and one
in the D-ALG + O-PS toxin A group, died of P. aeruginosa
sepsis (blood culture positive for P. aeruginosa PAO 579)
within the first 2 days after challenge (Table 6).

Pathologic abnormalities. Macroscopically the less affected
lungs were observed among the control rats injected with
sterile saline when compared with the other vaccine groups,
and the differences were significant compared with results for
the rats given IFA or P. aeruginosa sonicate (P < 0.05). In the
sterile-saline group the pathologic changes were rather heter-
ogeneous; some of the rats had abscesses in the lower section
of the left lung, whereas others did not show any sign of
inflammation. In contrast, the pathologic changes observed in
the control group given IFA and the groups of rats immunized
with vaccines containing P. aeruginosa antigens appeared much
more homogeneous, with adherences, abscesses, some small
hemorrhages, and smaller and larger atelectases located pri-
marily in the lower section of the left lung (Table 6).
The most severe microscopic inflammations were observed

among vaccinated rats when compared with the control groups.
The histopathologic abnormalities in the rats injected with
sterile saline were characterized by an acute inflammatory
reaction dominated by numerous PMNs (.90%) surrounding
the alginate beads (microcolonies) (Fig. la). In contrast, the
inflammatory response observed in the IFA group and the
immunized rats had shifted from an acute-type inflammatory
response to a chronic-type inflammation dominated by mono-
nuclear cells (.90% lymphocytes and plasma cells) and scat-
tered granulomas (Fig. lb) (Table 6).

Bacteriologic testing. P. aeruginosa could be cultured from
67% of the control rats given sterile saline; this was a signifi-
cantly (P < 0.05) higher percentage than that for most other
vaccine groups (Table 6). Three vaccines, O-PS toxin A,
D-ALG toxin A, and P. aeruginosa alginate 6680 + 8839, were
found to have completely cleared the bacteria (Table 6).

DISCUSSION

Experimental models of the chronic lung infection found in
CF patients have previously been established in rats by Cash et
al. (8) and others (3, 9, 17, 24, 25, 29, 33, 38, 39, 51, 55, 59, 67),
who incorporated P. aeruginosa bacteria into agar beads,
agarose beads, or alginate beads. We have recently established
the alginate bead model of chronic P. aeruginosa lung infection
in normal rats (34, 55) and athymic rats with an abundance of

PMNs dominating the inflammatory reaction in both types of
rats as in CF (34). The protective effect of preimmunization on
the chronic P. aeruginosa lung infection has previously been
studied by others, using different animal models. Klinger et al.
(38) used a PEV-01 vaccine consisting of LPS and other cell
wall antigens from 16 0 groups of P. aeruginosa for immuniz-
ing rats before inducing the chronic lung infection. They found
significantly milder lung abnormalities but no decrease of the
P. aeruginosa count in the lungs 8 to 10 days after challenge.
Similar results as regards protection were obtained by Gille-
land et al. (24, 25), using outer membrane protein F from P.
aeruginosa for immunization prior to challenge of rats with
agar beads containing P. aeruginosa. Pennington et al. (56)
found that in guinea pigs intratracheally challenged with P.
aeruginosa-containing agar beads, immunization with a P.
aeruginosa LPS vaccine resulted in smaller numbers of viable
P. aeruginosa bacteria and reduced histopathologic abnormal-
ities of the lungs.

In the present study all rats either were prevaccinated or
received a control injection. All vaccines containing P. aerugi-
nosa antigens were able to induce high antibody responses
against their homologous antigens in ELISAs (Tables 1 to 5).
In general the macroscopic and microscopic abnormalities
were more pronounced in immunized rats and in the IFA
group compared with those in the controls given sterile saline.
This severity could be due to hypersensitivity reactions, e.g.,
immune complex-mediated lung tissue damage as in CF (32).
When these results were compared with previous findings in
nonvaccinated rats, the only group which persistently showed
similar histopathologic findings was the control group receiving
sterile saline. In these rats 4 weeks after challenge, PMNs
surrounded the alginate beads containing the bacteria as in CF.
With regard to changing the inflammatory response, the effect
caused by the P. aeruginosa-containing vaccines was equal to
that in rats injected with IFA, since the inflammatory response
in these rats also changed to a chronic-type inflammation with
mononuclear leukocytes and eradication of most of the bacte-
ria (Table 6). The vaccine-induced antibodies therefore seem
to play a minor role in prevention of the inflammation. This
shift from an acute to a chronic inflammation is potentially
very important since the tissue damage in CF has been shown
by many authors to be caused by PMN elastase (26, 31, 46, 47,
65, 66).
There is a considerable body of evidence that adjuvants can

influence the antibody isotype and cell-mediated immunity in
rodents (4). All the P. aeruginosa vaccines in the present study
were adsorbed to either Al(OH)3 or IFA. These two adjuvants
both enhance the IgGl antibody response and induce Thl
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FIG. 1. (a) Photomicrograph of a section from the lower portion of the left lung in a normal rat injected with sterile saline (group 1) 28 days
after challenge with 109 CFU of P. aeruginosa-containing alginate beads per ml. Note the dense accumulation of PMNs surrounding the alginate
bead with P. aeruginosa bacteria located as microcolonies within the bead as in CF patients. Stain, hematoxylin and eosin. Magnification, x 1,000.
(b) Photomicrograph of a section from the lower portion of the left lung in a normal rat immunized with D-ALG toxin A conjugate (group 5) 28
days after challenge with 109 CFU of P. aeruginosa-containing alginate beads per ml. Note the alginate bead surrounded by mononuclear
leukocytes, different from the situation observed in CF patients. Stain, hematoxylin and eosin. Magnification, x 1,000.

lymphocytes, and they should therefore induce similar patho-
logic and serologic effects in the vaccine groups (4).
The adjuvant effect caused by IFA is in accordance with

previous findings by Roberts et al. (61), who found that
injection with complete Freund's adjuvant (CFA) reduced the
severity of an acute pneumonia caused by Streptococcus pneu-
moniae in rat lungs when compared with that in rats not

receiving CFA. Buhles et al. (7) found that immune stimula-
tion of granulocytopenic mice with CFA partially protected
them against the lethal consequences of subsequent infection
with Staphylococcus aureus. The tendencies in our experiment
with IFA and the two experiments with CFA are similar.
However, CFA includes mycobacteria in the oil and therefore
possesses even stronger immunomodulatory traits than IFA
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since it also leads to the appearance of IgG2 antibodies and to
a delayed hypersensitivity reaction (4).
The slight increase in IgM, IgG, and IgA antibodies to, e.g.,

alginate (Table 1) in the control animals injected with NaCl or
especially IFA correlates with the older age of the animals,
which is known to lead to higher titers of "natural antibodies"
(30). Since IFA stimulates Thl lymphocytes (4) to produce the
cytokines interleukin-2, gamma interferon, and tumor necrosis
factor beta (48, 49), this may explain the developing antibody
level seen in these rats.
The pathologic changes observed in the D-ALG toxin A-

and P. aeruginosa alginate-immunized animals were similar in
degree; the total clearance of the bacteria in the two groups
was also similar. However, the doses and composition of the
two alginates used for immunization were rather different.
Rats immunized with depolymerized alginate received two
25-,ug doses, whereas rats immunized with purified alginate
received 140 jig per dose. Although we did not investigate the
opsonic capacity of sera in this study, our findings do not seem
to be in agreement with those of Pier et al. (59), who found
that mice and rats immunized with 1 to 10 jig of MEP
(alginate), respectively, elicited opsonizing antibodies, which
reduced the chronic lung infection and induced complete
bacterial clearance compared with the results in nonimmune
controls. However, doses of .40 ,ug per mouse and 100 ,ug per
rat induced only nonopsonic antibodies, resulting in more
severe lung damage and more animals with detectable P.
aeruginosa in the lungs, when compared with results for
animals immunized with low doses. Furthermore, it was found
that in mice, a higher-molecular-weight preparation of MEP
elicited opsonic killing antibodies over a wide dose range (1 to
400 jig) (23). We have no obvious explanation for the differ-
ences between our results and those of Pier et al.
Woods and Bryan (67) immunized rats twice with 100 jig of

alginate and showed that animals inoculated with a nonmucoid
strain cleared the bacteria whereas the rats inoculated with a
mucoid strain remained infected on day 30. These findings are
also different from ours, since we found that rats immunized
with either 140 jig of purified alginate or 25 jig of depolymer-
ized alginate were able to clear the mucoid challenge strain.
The severity of the pathologic changes observed in our rats
immunized with alginate could be due to hypersensitivity
reactions, e.g., immune complexes formed during the chronic
lung infection, as suggested by Woods and Bryan (67).
LPS was included in two of the vaccines used in the study,

the O-PS toxin A conjugate and the P. aeruginosa sonicate. The
number of cross-reactive IgM, IgG, and IgA antibodies elicited
by the toxin A conjugate against PAO 579 LPS was small.
Considering the 0 antigens involved (43), this is surprising
since two of the eight serotypes (immunotypes IT-3 and IT-7)
represented in the vaccine have a similar 0 group 2/5 to that of
the antigen used in the ELISA, and we would therefore expect
a certain cross-reactivity. The low level of cross-reacting anti-
bodies could be due to differences in the typing antisera and
typing methods, which may lead to apparently similar Habs
0-groups with antigenically different LPS types (21). The O-PS
toxin A conjugate vaccine has previously been used (63) in a
clinical study of noncolonized CF patients. It is thought-
provoking that the antibody responses are low in rats whereas
the vaccine induces high and functional antibody levels when
used in humans (60). When rats were immunized with a
combination of the two toxin A conjugate vaccines (group 6),
diminished immune responses were recorded against all anti-
gens used. Since both vaccines have previously evoked high
titers of IgG antibodies against alginate, LPS, and toxin A in
healthy volunteers (11, 12), an immunologic interference may

have occurred in the rats, resulting in an "antagonistic"
antibody response. The reason for this is unclear but may be
related to immunosuppressive effects of some P. aeruginosa
LPSs (20).
Toxin A is known to be an important virulence factor, and

when it is secreted by P. aeruginosa, it has been shown to be
associated with severe bronchial inflammation and parenchy-
mal changes (68). Anti-toxin A antibodies could be demon-
strated in all rats immunized with toxin A conjugated vaccines.
However, toxin A did not significantly improve the lung
abnormalities when compared with the sterile saline controls.
The protective capability of the LPS vaccine (0-PS toxin A)

used in the present study is not completely in accordance with
the findings of Pennington et al. (56). We found that rats
immunized with LPS-containing P. aeruginosa sonicate had
more severe lung damage and reduced bacterial elimination
but had higher antibody titers directed against most of the
antigens used in the ELISAs. The severe abnormalities and
reduced clearance could be due to hypersensitivity reactions,
e.g., immune complexes (32, 67), of which there was no
evidence in the study performed by Pennington et al. (56).
The more severe macroscopic abnormalities observed

among our immunized rats fit well with the observations of
Langford and Hiller (42), who found that vaccination of
noninfected CF patients with a polyvalent P. aeruginosa vac-
cine induced more rapid deterioration than that found in
nonvaccinated controls. The accelerated course of the disease
in vaccinated patients may also be explained by hypersensitivity
reactions, e.g., immune complex-mediated lung tissue damage,
which occurs during chronic lung infection in CF (32, 50, 52).

In conclusion, this study shows that none of the vaccines
used could completely prevent chronic lung inflammation 4
weeks after challenge with P. aeruginosa-containing alginate
beads. In all immunized rats and the IFA control group, we
succeeded in changing the inflammatory response from an
acute-type inflammation dominated by PMN leukocytes as in
CF patients to a chronic-type inflammation dominated by
mononuclear leukocytes. The altered abnormalities in immu-
nized rats and the improved bacterial clearance might be of
great advantage in future management of CF patients, since
the ongoing lung tissue damage has been shown to be caused
by elastase (26, 31, 46, 47, 65, 66) secreted by PMNs, which
dominate the chronic P. aeruginosa lung infection in CF
patients.
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