Supporting Information Appendix

for article published in PNAS P. Natl. Acad. Sci. USA, doi:10.1073/pnas.1011915108

Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century

Lenny H.E. Winkel^{1,4}, Pham Thi Kim Trang², Vi Mai Lan², Caroline Stengel¹, Manouchehr Amini¹, Nguyen Thi Ha³, Pham Hung Viet², Michael Berg¹*

- ¹ Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland.
- ² Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai Street, Hanoi, Vietnam.
- ³ Vietnam Geological Survey, Northern Hydrogeological and Engineering Geological Division (NHEGD), Nghia Tan ward, Cau Giay district, Hanoi, Vietnam.
- ⁴ present address: University of Grenoble, Institut des Sciences de la Terre (ISTerre), Rue de la Piscine, 38041 Grenoble, France.
- * To whom correspondence should be addressed: E-mail: Michael.Berg@eawag.ch

Data deposition: Data, hydrochemical maps, modeled risk maps, and movies reported in this paper were deposited on the web site of Eawag and can be downloaded from http://www.eawag.ch/arsenic-vietnam

Table of Contents

- 1. Quality Assurance and Quality Control (QA/QC)
- 2. Geology
- 3. Modeling Parameters and Model Description
 - 3.1. Model based on 3D geology at depth
 - 3.2. Model based on surface parameters
 - 3.3. Model for Hanoi region based on 3D geology at depth
- 4. Model Output at Depth
- 5. Hydrochemical Atlas
- 6. References

1. Quality Assurance and Quality Control (QA/QC)

The robustness of the chemical analyses was assured by intermittent analysis of certified reference samples (SLRS-4 River Water Canada, TM-28.2 Lake Ontario, SPS-SW2 Surface Water Level 2 and reference samples from the international interlaboratory quality evaluations ARS13-16, ARS17-20, and ARS21-24 (1). In addition, cross-evaluation between different analytical techniques applied in our laboratories in Vietnam and Switzerland were carried out, e.g. AAS versus ICP-MS (see results in Table S1 below).

The results of certified samples and cross-checking agreed within $\pm 5\%$. Calibration curves had $r^2 > 0.999$ with the exception of Na and K where r^2 were 0.990 (ICP-OES). Standard deviations of triplicates were always <5%. The limits of quantification (LOQ, 10 x standard deviation of noise) were:

```
0.1 µg/L for As, Cd, Co, Cr, Cu, Hg, Li, Ni, Pb, Sb, Se, U, and Zn
```

 $0.5 \,\mu\text{g/L}$ for Al

 $1 \,\mu\text{g/L}$ for B

5 μg/L for Ba

0.01 mg/L for Fe, Mn and Ammonium (NH₄⁺-N)

0.1 mg/L for Ca, K, Mg, Na, Phosphate $(PO_4^{3-}-P)$, and Sulphate (SO_4^{2-})

0.25 mg/L for Nitrate (NO₃-N)

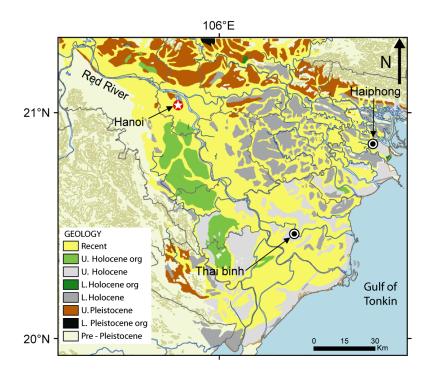
0.5 mg/L for Chloride (Cl⁻) and Dissolved Organic Carbon (DOC)

1 mg/L for Br and I

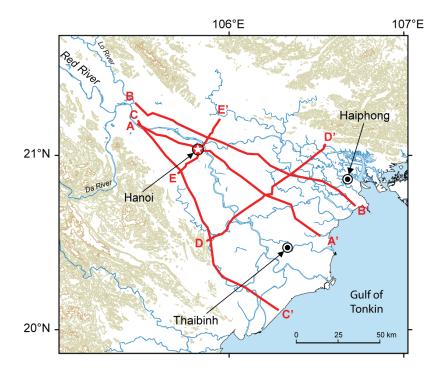
2 mg/L for Si

12 mg/L for HCO_3^- (0.2 mmol/L)

Table S1. Cross-correlations of selected parameters determined by various methods in our laboratories in Vietnam and Switzerland.


⁽²⁾ Analyses conducted by the Research Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Vietnam National University.

Parameter	Analytical methods	Samples	Cross-correlation
Arsenic (A)	ICP-MS ⁽¹⁾ vs. AFS ⁽¹⁾	n = 216	r ² = 1.00
Arsenic (B)	ICP-MS ⁽¹⁾ vs. AAS ⁽²⁾	n = 461	$r^2 = 0.99$ $v_{\frac{1}{2}}$ v
Ammonium	Photometry ⁽¹⁾ vs. Photometry ⁽²⁾	n = 21	r ² = 0.98
Calcium	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 21	r ² = 1.00
Chloride	IC ⁽¹⁾ vs. IC ⁽²⁾	n = 21	r ² = 0.99


⁽¹⁾ Analyses conducted by the Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.

Iron	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 21	$r^{2} = 1.00$ $\frac{10}{20}$ AAS
Magnesium	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 460	r ² = 0.99
Manganese	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 74	$r^2 = 1.00$ g_2 g_0 g_1 g_1 g_2 g_1 g_2 g_1 g_2 g_3 g_4 g_4 g_4 g_4 g_4 g_5 g_7 g_8 g_1 g_8 g_8 g_1 g_8 g_1 g_1 g_1 g_2 g_3 g_4 g_1 g_1 g_2 g_3 g_4 g_4 g_8 g_9 g_8
Silicon	Photometry ⁽¹⁾ vs. Photometry ⁽²⁾	n = 21	r ² = 0.99

2. Geology

Figure S1. Geological map of the Red River delta indicating eight depositional environments. (Adapted from the geological map 1998, Northern Hydrogeological and Engineering Geological Division (NHEGD), Vietnam Geological Survey).

Figure S2. Location of the geological cross-sections A-A' to E-E'. The cross-sections are displayed in Figure S3.

Geological cross-sections - Red River delta (Bac Bo plain)

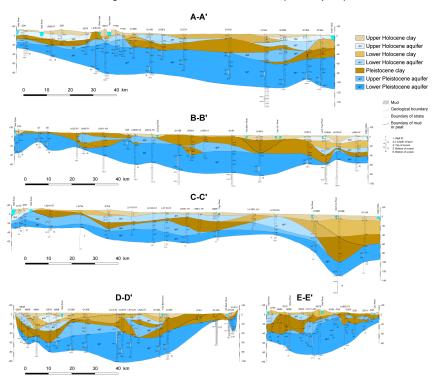
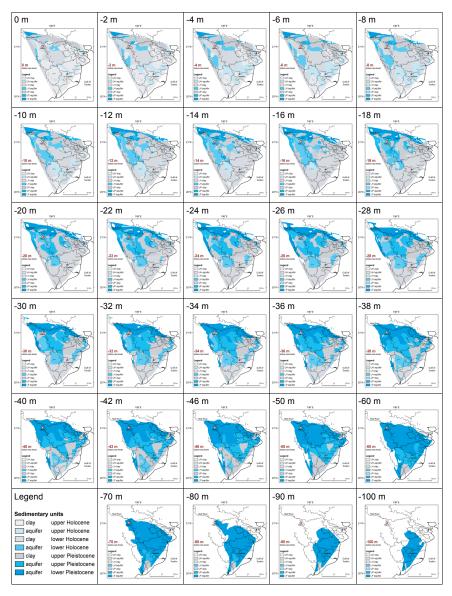



Figure S3. Simplified geological cross-section along the transects A-A' to E-E' D-D' indicated in Figure S2. At a regional scale, four different aquifers were formed in the Quaternary period: Lower Pleistocene (LP) aquifer (lower boundary 700,000 years BP), Upper Pleistocene (UP) aquifer (125,000 years BP), Lower Holocene (LH) aquifer (3000 years BP) and Upper Holocene (UH) aquifer (1000 BP). The three Quaternary aquitards are characterized by clay layers and occasionally intercalated peat lenses.

Figure S4. Major aquifers of the Red River delta **depicted at depth intervals of 2, 4 or 10 m.** Depths are given in meters below sea level. These maps are available online in high resolution as Supporting Information (SI) Movie S1. See http://dx.doi.org/10.1073/pnas.1011915108

3. Modeling Parameters and Model Description

3.1. Model based on three-dimensional (3D) geology

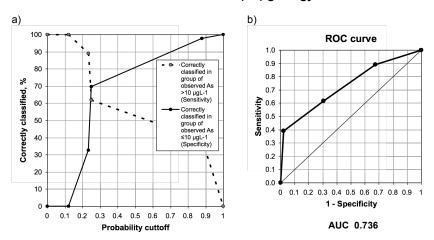


Figure S5. a) Model classification results based on 3D geology of the Red River delta. The graph shows the sensitivity (true positives) and specificity (true negatives) of the model for different probability cutoff values. The full classification table is provided in Table S2. b) Receiver operation characteristics curve (ROC) derived from the model classification table (Table S3). The area under the curve (AUC, also referred to as 'c' statistics) indicates the discriminative power of the logistic equation. It typically varies between 0.5 (random model) and 1.0 (entirely perfect model). The AUC value of this model is 0.736, which corresponds to 73.6% correctly classified cases of measured As concentrations.

Table S2. Hosmer-Lemeshow (2) goodness-of-fit table for the arsenic prediction model based on 3D geology.

		As ≤10		As >10		
group	probability	a	expected ^a	observed ^b	expected ^b	total
1	0.18	84	83.7	11	11.26	95
2	0.23	3	3.3	1	0.74	4
3	0.25	92	89.3	22	24.72	114
4	0.26	63	66.1	23	19.89	86
5	0.28	19	18.6	10	10.40	29
6	0.34	6	6.0	43	43.00	49

^a Average deviation of observed and expected As ≤10 µgL⁻¹: 3.14% (absolute)

^b Average deviation of observed and expected As >10 μgL⁻¹: 9.66% (absolute)

Table S3. Classification table of model performance for different cutoff values of predicted probabilities (2) for the arsenic prediction model based on 3D geology.

•	As ≤10 ugL ⁻¹				>10 ugL ⁻¹		correctly classified in group	
probability cutoff	observed_ cases	predicted ≤cutoff	cases >cutoff	observed cases	predicted ≤cutoff	cases	As obs ≤10 "specificity" true negatives	As obs >10 "sensitivity" true positives
0	267	0	267	110	0	110	0	100
0.121	267	0	267	110	0	110	0	100
0.233	267	87	180	110	12	98	32.6	89.1
0.250	267	186	81	110	42	68	69.7	61.8
0.878	267	261	6	110	67	43	97.8	39.1
1	267	267	0	110	110	0	100	0

3.2. Model based on surface parameters

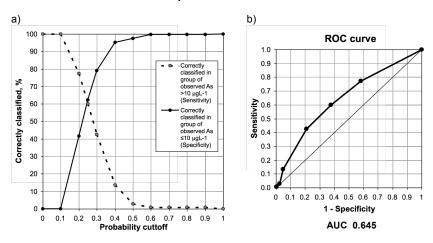


Figure S6. a) Model classification results based on surface parameters of the Red River delta. The graph shows the sensitivity (true positives) and specificity (true negatives) of the model for different probability cutoff values. The full classification table is provided in Table S4. b) Receiver operation characteristics curve (ROC) derived from the model classification table (Table S5). The area under the curve (AUC, also referred to as 'c' statistics) indicates the discriminative power of the logistic equation. It typically varies between 0.5 and 1.0. The AUC value of this model is 0.645, which corresponds to 64.5% correctly classified cases of measured As concentrations.

Table S4. Hosmer-Lemeshow (2) goodness-of-fit table for the arsenic prediction model based on surface parameters.

			As ≤10 μgL ⁻¹		As >10 μgL ⁻¹		
group	probability	observed ^a	expected ^a	observed ^b	expected ^b	total	
1	0.17	155	154.3	32	32.7	187	
2	0.17	18	18.7	7	6.3	25	
3	0.17	45	44.2	16	16.8	61	
4	0.25	75	73.0	26	28.0	101	
5	0.28	21	21.8	14	13.2	35	
6	0.28	39	41.0	27	25.0	66	
7	0.28	17	17.0	18	18.0	35	

^a Average deviation of observed and expected As ≤10 μgL⁻¹: 2.55% (absolute)

Table S5. Classification table of model performance for different cutoff values of predicted probabilities (2) for the arsenic prediction model based on surface parameters.

As ≤10 ugL ⁻¹				As >10 ugL ⁻¹			correctly classified in group		
probability cutoff	observed_ cases	predicted ≤cutoff		observed cases	predicted ≤cutoff		As obs ≤10 "specificity" true negatives	As obs >10 "sensitivity" true positives	
0	371	0	371	141	0	141	0	100	
0.1	371	0	371	141	0	141	0	100	
0.2	371	155	216	141	32	109	41.8	77.3	
0.25	371	223	148	141	53	88	62.4	60.1	
0.3	371	293	78	141	81	60	79.0	42.6	
0.4	371	353	18	141	122	19	95.1	13.5	
0.5	371	362	9	141	137	4	97.6	2.8	
0.6	371	370	1	141	140	1	99.7	0.7	
0.7	371	370	1	141	140	1	99.7	0.7	
8.0	371	370	1	141	140	1	99.7	0.7	
0.9	371	370	1	141	140	1	99.7	0.7	
1	371	371	0	141	141	0	100	0	

b Average deviation of observed and expected As >10 μgL⁻¹: 5.47% (absolute)

3.3. Model for Hanoi region based on 3D geology

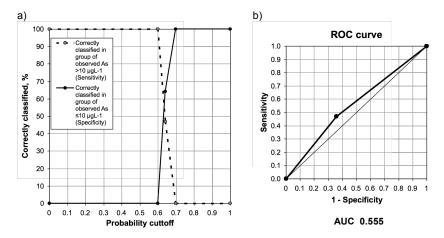


Figure S7. a) Model classification results for the Hanoi region based on 3D geology at depth. The graph shows the sensitivity (true positives) and specificity (true negatives) of the model for different probability cutoff values. The full classification table is provided in Table S6. b)

Receiver operation characteristics curve (ROC) derived from the model classification table (Table S7). The area under the curve (AUC, also referred to as 'c' statistics) indicates the discriminative power of the logistic equation. It typically varies between 0.5 and 1.0. The AUC value of our model is 0.555, which corresponds to 55.5% correctly classified cases of measured As concentrations.

Table S6. Hosmer-Lemeshow (2) goodness-of-fit table for the arsenic prediction model of the Hanoi region based on 3D geology.

		As ≤10	µgL ⁻¹	As >10		
group	probability	observed	expected	observed	expected	total
1		57	57.0	43	43.0	100
2		92	92.0	115	115.0	207
3		35	35.0	111	111.0	146

Table S7. Classification table of model performance for different cutoff values of predicted probabilities (2) for the arsenic prediction model based on 3D geology.

As ≤10 ugL ⁻¹			As >10 ugL ⁻¹			correctly classified in group		
probability cutoff	observed cases	predicted ≤cutoff		observed cases	predicted ≤cutoff		As obs ≤10 "specificity" true negatives	As obs >10 "sensitivity" true positives
0	184	0	184	269	0	269	100	100
0.6	184	0	184	269	0	269	100	100
0.641	184	118	66	269	143	126	46.8	46.8
0.7	184	184	0	269	269	0	0	0
1	184	184	0	269	269	0	0	0

4. Model Output at Depth

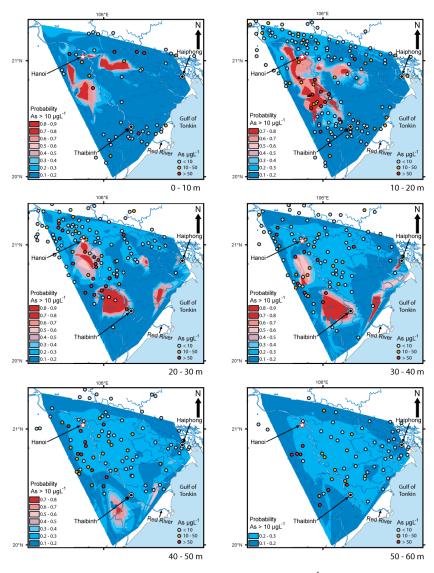


Figure S8. Average probability of As concentrations exceeding 10 μ g L⁻¹ at 10 m depth intervals and measured arsenic concentrations at the same depths.

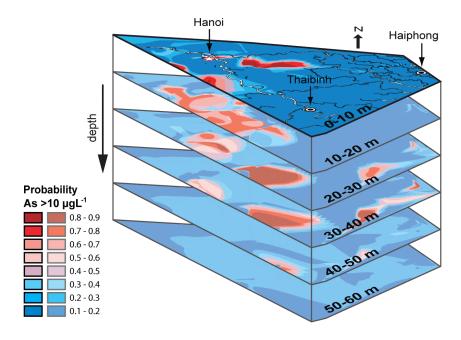


Figure S9. 3D distribution of As exceeding 10 $\mu g L^{\text{-1}}$ in the Red River delta, stacked in 10 m depth intervals.

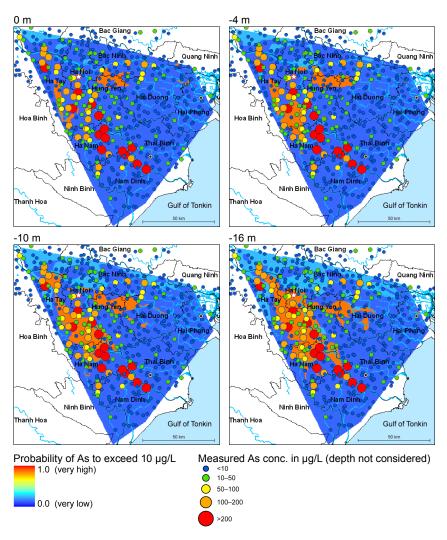


Figure S10. Probability of As contamination at given depths. Depths are given in meters below sea level. High resolution maps in 2-meter depth intervals are as Supporting Information (SI) Movie S2. See http://dx.doi.org/10.1073/pnas.1011915108

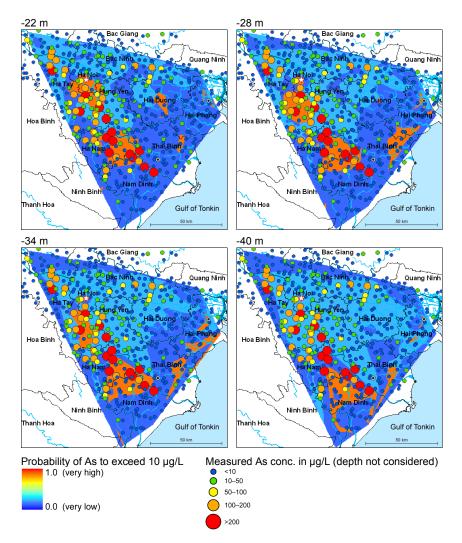


Figure S10 (cont.). Probability of As contamination at various depths. Depths are given in meters below sea level. High resolution maps in 2-meter depth intervals are as Supporting Information (SI) Movie S2. See http://dx.doi.org/10.1073/pnas.1011915108

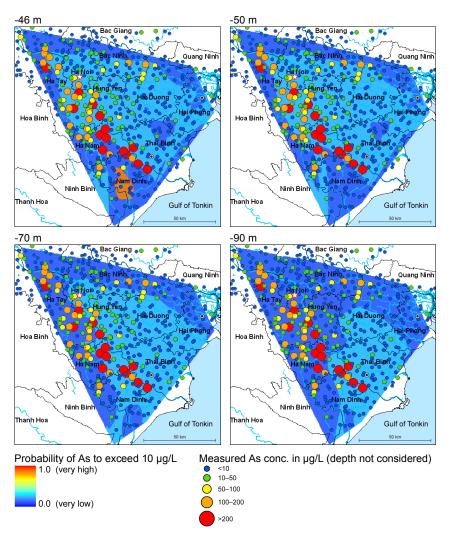
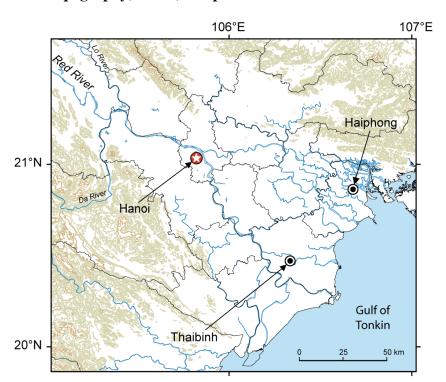
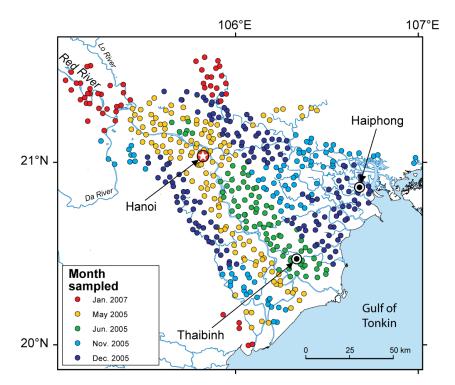


Figure S10 (cont.). Probability of As contamination at various depths. Depths are given in meters below sea level. High resolution maps in 2-meter depth intervals are as Supporting Information (SI) Movie S2. See http://dx.doi.org/10.1073/pnas.1011915108

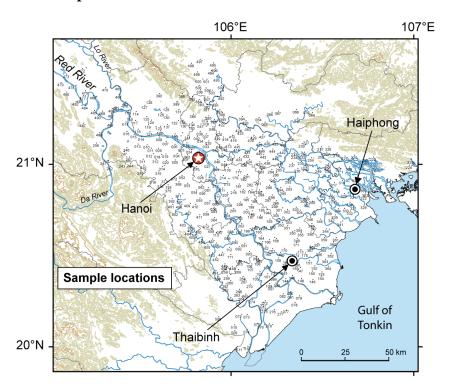
5. Hydrochemical Atlas

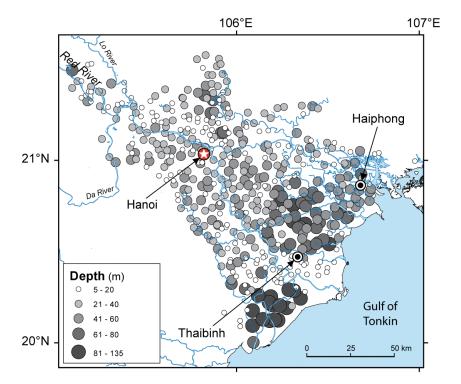

The complete geo-referenced database is provided online as Supporting Information (SI) Dataset S1. See http://dx.doi.org/10.1073/pnas.1011915108

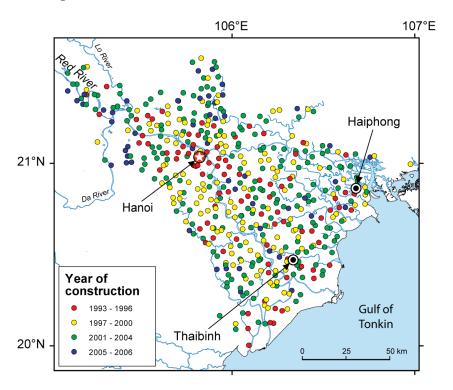
Contents

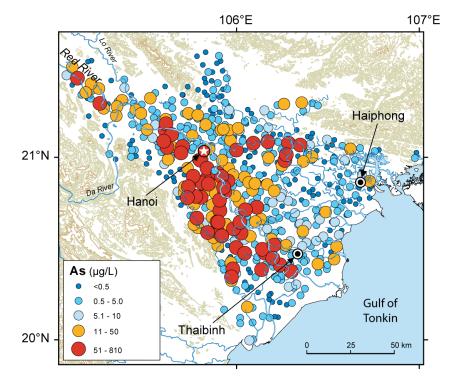

- 1 Topography, rivers, and province boundaries
- 2 Sampling date
- 3 Sample locations
- 4 Well depth
- 5 Age of wells
- 6 Arsenic
- 7 Alkalinity
- 8 Aluminium
- 9 Ammonium
- 10 Barium
- 11 Boron
- 12 Bromine
- 13 Cadmium
- 14 Calcium
- 15 Chloride
- 16 Chromium
- 17 Cobalt
- 18 Copper
- 19 Dissolved organic carbon
- 20 Electrical conductivity
- 21 Iron
- 22 Lead
- 23 Magnesium
- 24 Manganese
- 25 Mercury
- 26 Nickel
- 27 Nitrate
- 28 Oxygen
- 29 pH
- 30 Phosphate
- 31 Potassium
- 32 Redox potential
- 33 Silicon
- 34 Selenium
- 35 Sodium
- 36 Sulphate
- 37 Uranium
- 38 Zinc

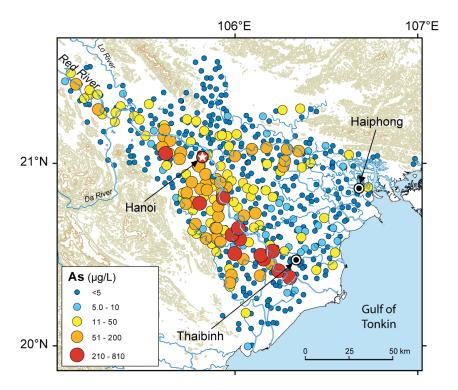
Hydrochemical Atlas of the Red River delta, Vietnam 2010, Eawag, Swiss Federal Institute of Aquatic Science and Technology www.eawag.ch/arsenic-vietnam correspondence: Michael.Berg@eawag.ch


1 Topography, rivers, and province boundaries

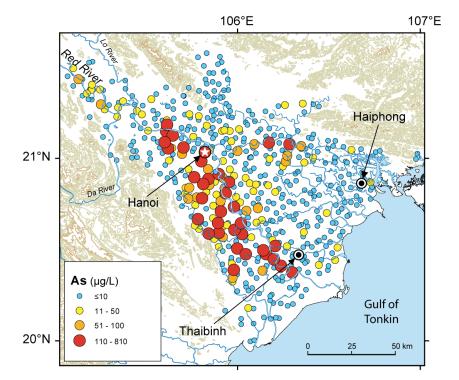

2 Sampling date


3 Sample locations and ID

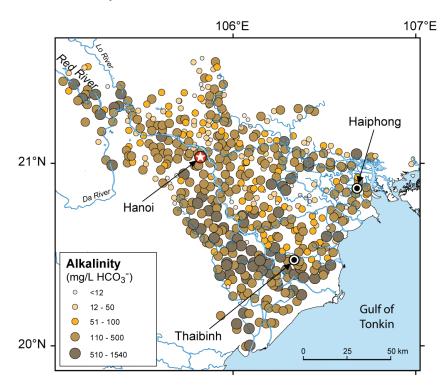

4 Well depth


5 Age of wells

6a Arsenic (<0.5 to >50)

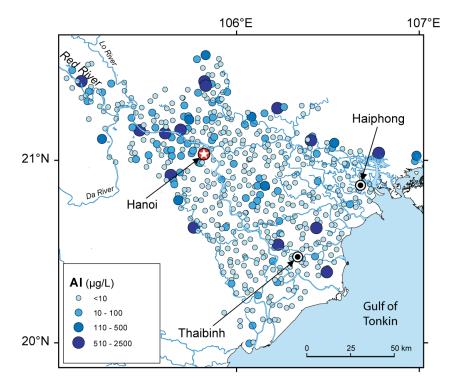


6b Arsenic (<5 to >200)

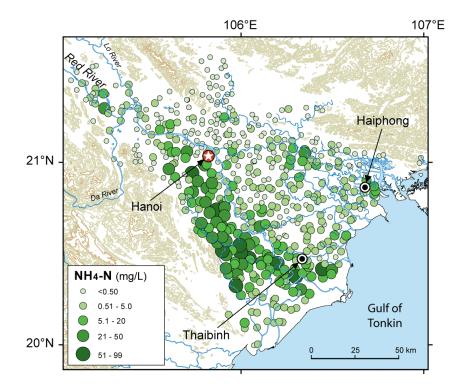


Hydrochemical Atlas of the Red River delta, Vietnam 2010, Eawag, Swiss Federal Institute of Aquatic Science and Technology www.eawag.ch/arsenic-vietnam correspondence: Michael.Berg@eawag.ch

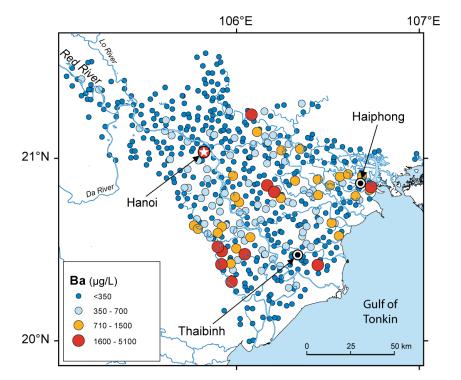
6c Arsenic (<10 to >100)

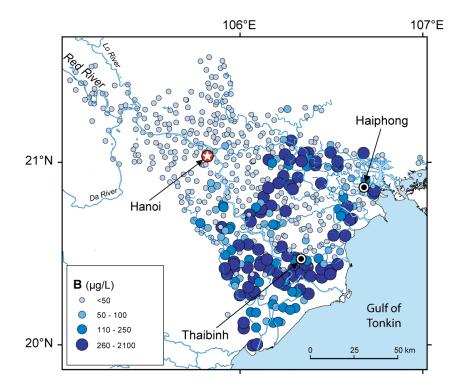


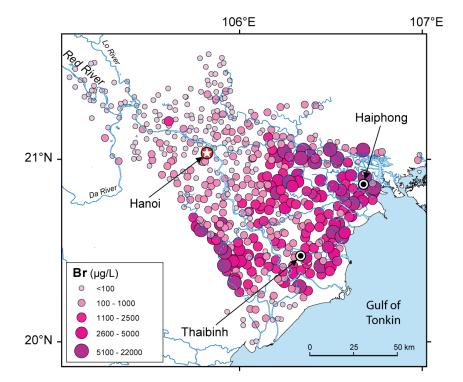
7 Alkalinity

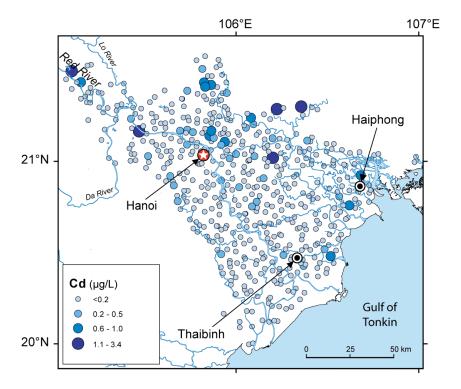


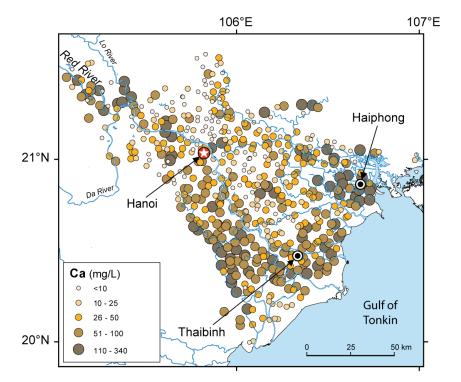
Hydrochemical Atlas of the Red River delta, Vietnam 2010, Eawag, Swiss Federal Institute of Aquatic Science and Technology www.eawag.ch/arsenic-vietnam correspondence: Michael.Berg@eawag.ch

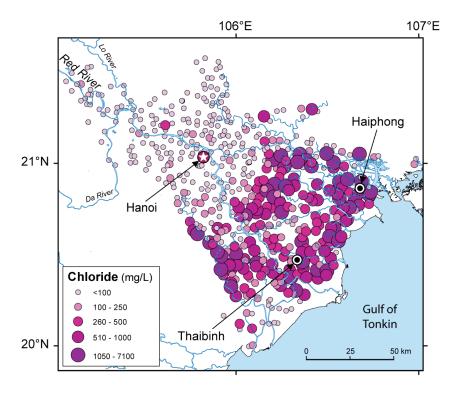

8 Aluminium

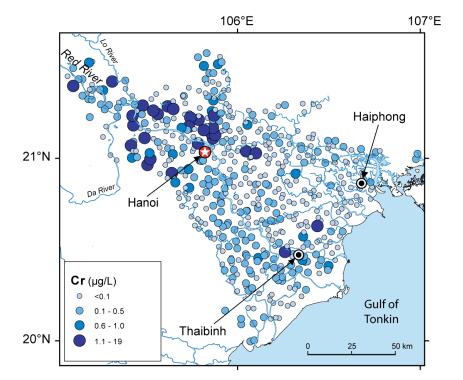

9 Ammonium

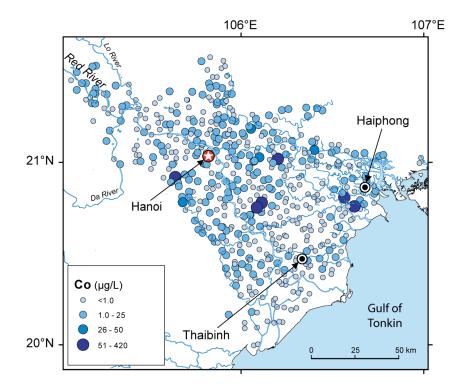

10 Barium

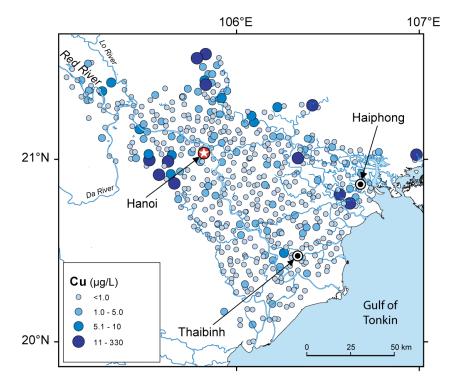

11 Boron

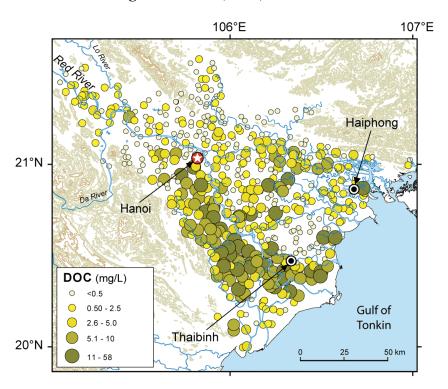

12 Bromine

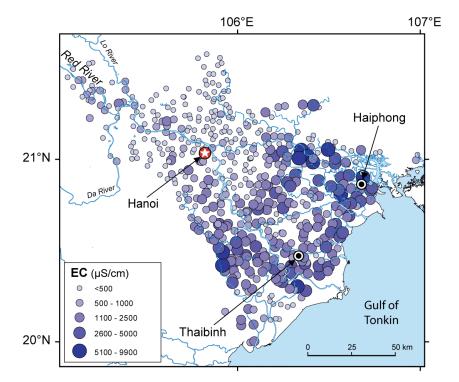

13 Cadmium

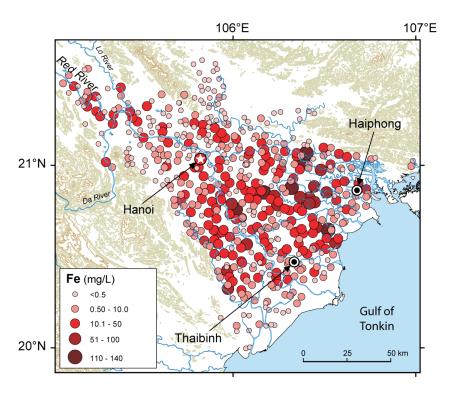

14 Calcium

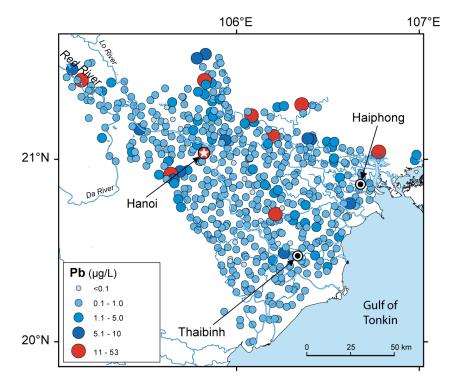

15 Chloride

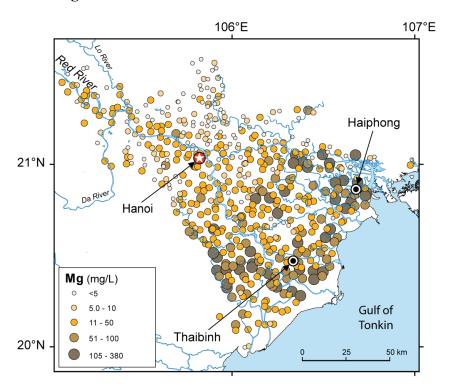

16 Chromium

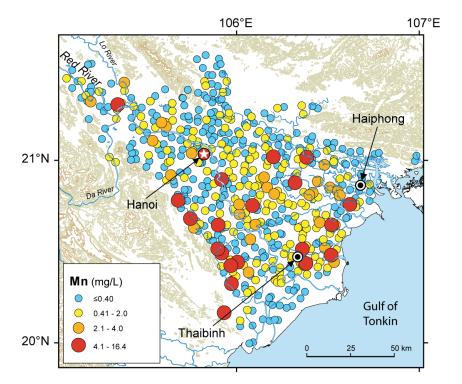

17 Cobalt

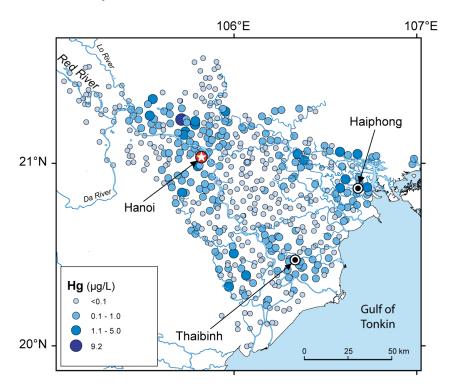

18 Copper

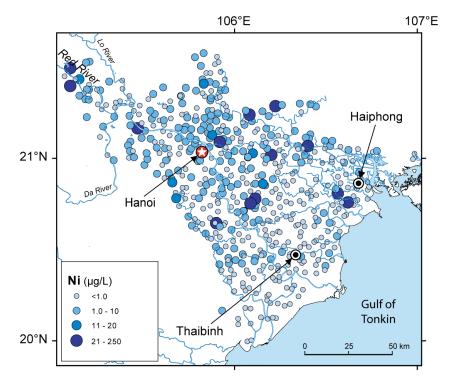

19 Dissolved organic carbon (DOC)

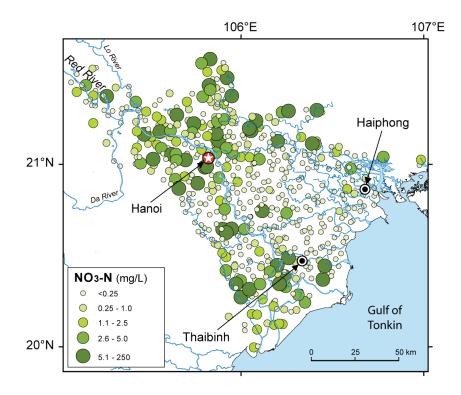

20 Electrical conductivity

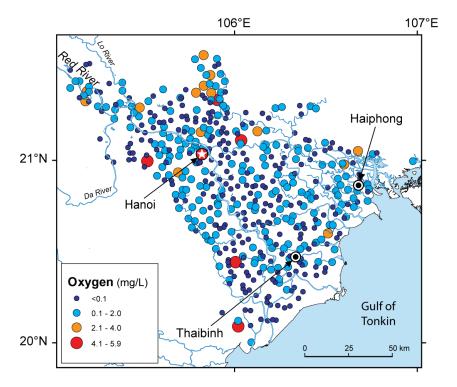

21 Iron

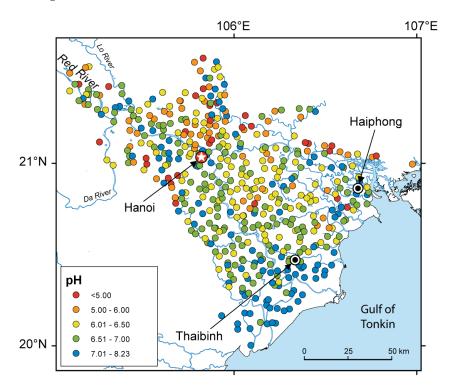

22 Lead

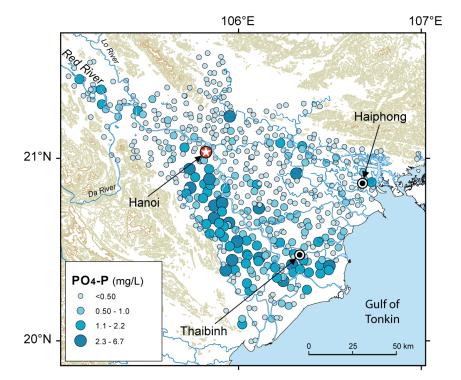

23 Magnesium

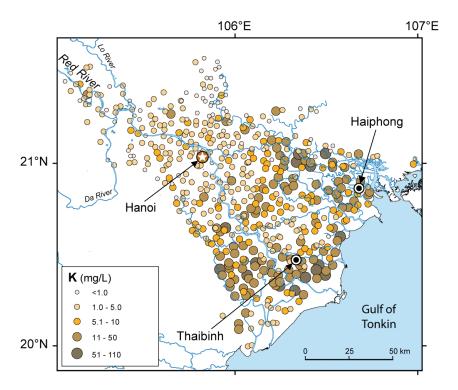

24 Manganese

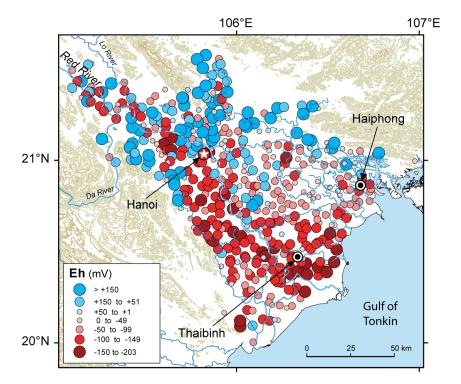

25 Mercury

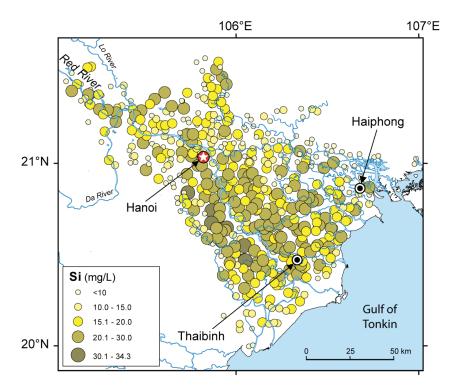

26 Nickel

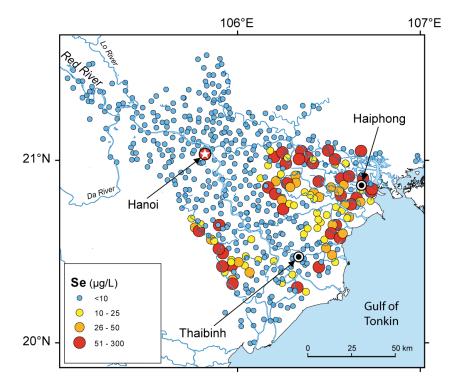

27 Nitrate

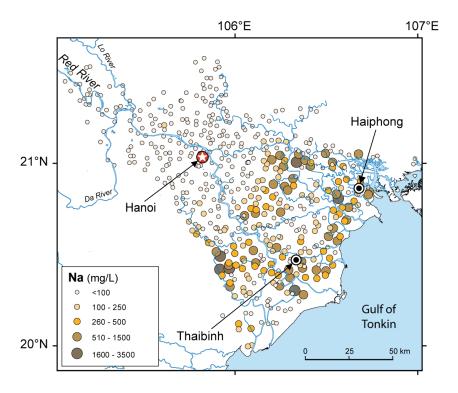

28 Dissolved Oxygen

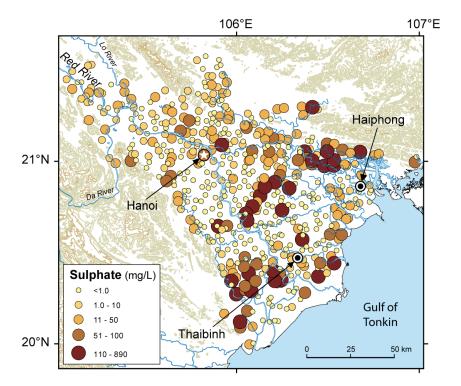

29 pH

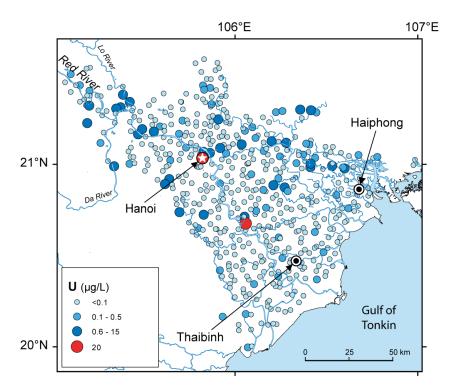

30 Phosphate

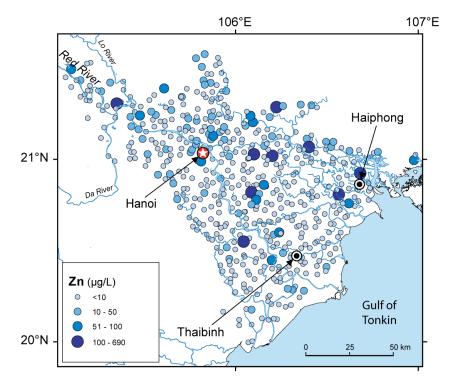

31 Potassium


32 Redox potential (Eh)


33 Silicon


34 Selenium


35 Sodium


36 Sulphate

37 Uranium

38 Zinc

Hydrochemical Atlas of the Red River delta, Vietnam 2010, Eawag, Swiss Federal Institute of Aquatic Science and Technology www.eawag.ch/arsenic-vietnam correspondence: Michael.Berg@eawag.ch

6. References

- Berg M, Stengel C (2006) ARS21-24 arsenic reference samples Interlaboratory Quality Evaluation (IQE). Report to Participants, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland.
- Hosmer DW, Lemeshow S (2000) Applied Logistic Regression, 2nd edition, John Wiley and Sons, New York.