Supporting Information

Calderon et al. 10.1073/pnas.1018975108

SI Materials and Methods

Mice. The list of mice is provided in the accompanying paper. For experiments using STZ (Sigma-Aldrich), a dose of 50 mg/kg i.p. was administered for 2 consecutive d before T-cell transfer. This dose provided the minimal requirements to induce leukocyte infiltration (1). The institutional animal care committee approved these studies.

T-Cell Transfers. Isolation and transfer of CD4 T cells were done as described. All cells were first activated in vitro before i.v. injection. Detailed procedures are provided in the accompanying paper (2). NOD and NOD.IFN- $\gamma R^{-/-}$ mice received a sublethal dose of irradiation (6.5 Gy) before T-cell injection. PTx treatment on activated CD4 T cells was performed as previously described (3).

Antibody Treatments. Mice received 500 μ g i.p. anti–IFN- γ –neutralizing mAb (clone H22; provided by R. Schreiber, Washington University School of Medicine, St. Louis, MO) or 400 μ g anti–VCAM-1 (clone M/K-2.7; ATCC). Isotype control rat IgG (Sigma-Aldrich) antibodies were used.

Islet Isolation and Handling. Islets isolation, staining for immunofluorescence analysis by standard microscope with epi-illumination, and confocal and two-photon microscopy were performed as described, and results are provided in the accompanying paper (2).

Microarray, qRT-PCR, and Evaluation. Islets of Langerhans were isolated from six to eight mice, yielding an average of 500 islets per isolation. For experiments using IP-HEL recipients, all mice

(T-cell-transferred and non-T-cell-transferred) received equal doses of sublethal irradiation. Total RNA was purified using RNAqueous Kit (Life Technologies). Samples were biotinlabeled and hybridized to Gene 1.0 ST microarrays (Affymetrix) using standard Affymetrix protocols (www.affymetrix.com) from the Siteman Cancer Center Molecular and Genomic Analysis Core Facility. Evaluation of differential gene expression was done using Arraystar Software (DNAstar). At least two independent RNA isolations and hybridizations were used to determine the significance of gene expression differences between the samples. Statistical significance was determined using moderated t test with Benjamini-Hochberg False Discovery Rate Analysis. Heat maps were generated using hierarchical clustering with Euclidean or Standard Pearson metric. K-means clustering was performed using Standard Pearson metric. GO term analysis was performed by hypergeometric probability distribution (4). Validation of microarray results was performed by qRT-PCR using the Fast SYBR Green kit and $\Delta\Delta C_t$ calculate on a StepOnePlus Instrument (Applied Biosystems). All primers were designed by Primer Bank (http://pga.mgh.harvard.edu/primerbank/), and actin was used as the qRT-PCR standard.

Statistical Analysis. The Mann–Whitney *u* test was used to determine the level of significant differences between samples, and these levels were plotted using GraphPad Prism 5 (GraphPad Software, Inc). *****P* < 0.0001; ****P* < 0.001; ***P* < 0.001; ***P* < 0.05; ns, $P \ge 0.05$. Median numbers of T cells per infiltrated islets in all experiments were obtained by including only islets containing infiltrating T cells.

4. Draghici S (2003) Data Analysis Tools for DNA Microarrays (Chapman & Hall, London).

Calderon B, Suri A, Unanue ER (2006) In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: Studies from an acute model. Am J Pathol 169:2137–2147.

Calderon B, Carrero JA, Miller MJ, Unanue ER (2011) Cellular and molecular events in the localization of diabetogenic T cells to islets of Langerhans. *Proc Natl Acad Sci USA*, 10.1073/pnas.1018973108.

Cyster JG, Goodnow CC (1995) Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords. J Exp Med 182:581–586.

Fig. S1. Leukocyte depleted islet cell enrichment. NOD $Rag1^{-/-}$ islets were isolated from untreated mice (resting islets) or from islets at 48 h post-BDC T-cell transfer (islets post-T-cell transfer). Dispersed islet cells were enriched by negative selection using Miltenyi Biotec (MACS) Magnetic Labeled Bead Cell Separation Columns with anti-mouse CD45 and CD11c microbeads to eliminated leukocytes. Islet cells were passed two times through separation columns. Preenrichment and postenrichment was evaluated by flow cytometry analysis. Data are representative of two experiments.

Table S1. IFN-dependent gene changes

PNAS PNAS

	Recipient mouse				
	NOD Ra	g1 ^{-/-}	NOD.IF	N-γR	
Gene name	Fold change	P value	Fold change	P value	
BC023105	102.303	0.000015	-1.062	0.762000	
Cxcl10	78.554	0.000003	10.978	0.000041	
ligp1	54.037	0.000017	-1.315	0.503000	
Mpa2l	40.955	0.000002	5.355	0.000248	
Gbp2	33.738	0.000015	3.794	0.002080	
Tgtp2	24.446	0.000033	-1.052	0.901000	
Cxcl9	24.433	0.000009	1.151	0.479000	
Gbp4	24.164	0.000032	2.249	0.007740	
Tgtp1	23.918	0.000048	-1.086	0.831000	
ligp2	20.831	0.000008	1.509	0.246000	
Gbp8	20.083	0.000002	2.571	0.006940	
Gbp5	14.231	0.000129	5.007	0.000983	
Ifit3	13.078	0.001420	1.412	0.527000	
Irgm1	12.416	0.000113	1.259	0.362000	
Gbp8	12.343	0.000090	1.922	0.019700	
Irgb10	11.609	0.000041	-1.18	0.437000	
Irg4/	10.409	0.000021	1.519	0.09/100	
GDD6	10.356	0.000073	1.624	0.135000	
GDD3	9.927	0.002740	1.381	0.283000	
Serpin3A*	9.907	0.000798	22.119	0.000479	
Gm4951	9.202	0.000040	-1.184	0.377000	
	9.094	0.000062	1.451	0.226000	
GDD6	9.016	0.000032	1.843	0.059200	
GZMA^	8.432	0.001150	9.632	0.003170	
AW1120100	8.214	0.000248	2.71	0.022300	
PSmD9	8.121	0.000700	2.013	0.110000	
GZIIID" Pembo	7.000	0.002460	9.000 207 C	0.000066	
PSIIID6	7.025	0.001010	2.705	0.045100	
Statt	6.770	0.000101	1.500	0.147000	
Ptp/	6.719	0.000030	2.505	0.010200	
$\Gamma(\mu 4)$	6.461	0.000044	8.1	0.440000	
lfit7	6.415	0.000270	1 187	0.517000	
1162	6 138	0.000075	2 114	0.032600	
Gdan10	5 772	0.035800	2.114	0.240000	
Samd9l	5 767	0.002060	2.757	0.057800	
Psme2	5 5 3 9	0.0002000	3 132	0.022200	
Miki	5.537	0.000105	1.797	0.013600	
Bcl2a1a*	5.431	0.016900	4.952	0.062600	
lfit1	5.418	0.000360	1.37	0.351000	
Casp1	5.376	0.002790	2.905	0.010900	
Bcl2a1b*	5.277	0.011500	4.792	0.055000	
Zbp1	5.202	0.000725	1.098	0.653000	
G530012D1	5.195	0.275000	1.806	0.669000	
Ube2l6	4.999	0.009030	2.448	0.056900	
Oasl2	4.991	0.000290	1.456	0.110000	
Tnfsf10	4.976	0.002470	1.482	0.078400	
Ifi204	4.965	0.000168	1.133	0.582000	
Gm5431	4.926	0.000613	-1.015	0.937000	
ENSMUSG0000057445	4.823	0.000697	1.436	0.254000	
Serping1*	4.813	0.004770	3.232	0.007510	
Bcl2a1d*	4.759	0.022300	4.472	0.073200	
Xzf1	4.599	0.000432	1.12	0.712000	
Gbp1	4.594	0.000096	1.308	0.153000	
Rsad2	4.546	0.000780	-1.074	0.660000	
Ch25h	4.544	0.003850	1.782	0.048000	
1830012O16	4.487	0.001670	1.482	0.199000	
Irf1	4.47	0.004580	1.77	0.197000	
Ifi44	4.47	0.000032	-1.165	0.488000	

Table S1. Cont.

PNAS PNAS

Gene name	Recipient mouse				
	NOD Ra	NOD Rag1 ^{-/-}		NOD.IFN-γR	
	Fold change	P value	Fold change	P value	
Ddx60	4.456	0.000047	1.747	0.027100	
Defb1*	4.449	0.022000	3.584	0.088400	
Nampt	4.447	0.000145	1.84	0.055200	
ll2rg*	4.44	0.002790	3.895	0.000507	
Crybb3*	4.426	0.004950	7.951	0.000201	
Parp14	4.356	0.000364	1.889	0.008090	
Serpin3f	4.3	0.001840	1.702	0.032300	
Psme2*	4.263	0.002260	2.333	0.081300	
Ms4a6d*	4.235	0.001920	2.636	0.010500	
116	4.214	0.003380	1.553	0.225000	
Cd53*	4.194	0.001840	5.465	0.000495	
Tmem140	4.19	0.000106	1.93	0.016700	
Ubd	4.178	0.010200	1.15	0.689000	
Cd52*	4.144	0.015800	3.868	0.014400	
Ppa1*	4.1	0.000671	2.101	0.058500	
Cfb*	4.087	0.045600	7.181	0.009380	
Lsm5	4.024	0.182000	2.679	0.403000	
Ifi203	4.01	0.002490	1.15	0.730000	

*Genes not reduced in IFN- $\gamma^{-\prime-}$ recipients.

	Unpurified β-cells	Purified β-cells
Gene name	Fold change	Fold change
BC023105	102.303	104.3
Cxcl10	78.554	105.556
ligp1*	54.037	45.606
Mpa2l	40.955	76.64
Gbp2	33.738	86.261
Igtp2	24.446	33.231
Chon Chon Chon Chon Chon Chon Chon Chon	24.433	14.937
Tatp1	24.104	30 365
lian2	20.831	22,422
Gbp8	20.083	55.652
Gbp5	14.231	38.876
lfit3*	13.078	10.242
lrgm1	12.416	14.62
Gbp8	12.343	47.104
Irgb10	11.609	12.401
lrg47	10.409	12.902
Gbp6	10.356	15.576
Gbp3	9.927	39.44
Serpin3A	9.907	16.538
Gm4951	9.202	10.5
Cd2/4	9.094	13.692
GDD6	9.010	20.000
AW/1120100	8.21 <i>/</i>	1.240
Psmb9*	8 121	4 44
Gzmb*	7.666	1.345
Psmb8	7.625	6.031
Stat1	6.776	11.725
Herc5	6.719	7.934
Rtp4	6.481	5.194
Ccl24*	6.455	-1.037
lfit2	6.415	6.224
Lуба	6.138	6.322
Gdap10*	5.772	1.673
Samd9I*	5.767	3.67
Psme2	5.539	5.575
MIKI	5.537	7.303
BCIZƏTƏ*	5.431	-1.299
IIILI Casp1*	5.376	8.077 2.646
Rcl2a1h*	5.370	_1 273
Zbp1	5.202	3.699
G530012D1*	5.195	1.446
Ube2l6	4.999	8.507
Oasl2	4.991	10.833
Tnfsf10	4.976	10.581
Ifi204*	4.965	2.288
Gm5431	4.926	4.452
ENSMUSG0000057445*	4.823	2.614
Serping1	4.813	5.472
BCIZa1d*	4.759	-1.007
AZII Gbp1	4.599	4.074
Cupi Read2	4.294 1 516	0.020 5.06
Ch25h*	4.540 A 5AA	0.00 1 601
1830012016	4.244 <u>4</u> 487	2 721
Irf1	4.47	4.565
lfi44	4.47	6.973
Ddx60	4.456	5.05
Defb1	4.449	3.533
Nampt	4.447	3.317

Table S2. Leukocyte-depleted gene changes

PNAS PNAS

Table S2. Cont.

PNAS PNAS

Gene name	Unpurified β-cells Fold change	Purified β-cells Fold change
ll2rg*	4.44	1.385
Crybb3	4.426	3.49
Parp14	4.356	8.631
Serpin3f	4.3	3.559
Psme2	4.263	3.459
Ms4a6d*	4.235	1.193
116	4.214	2.721
Cd53*	4.194	1.08
Tmem140	4.19	5.556
Ubd	4.178	2.688
Cd52*	4.144	1.569
Ppa1	4.1	2.465
Cfb	4.087	9.973
Lsm5*	4.024	1.493
Ifi203	4.01	2.129

*Leukocyte-associated genes.