Supporting Information

Englert et al. 10.1073/pnas.1018307108

Α	Score	Expectation	Protein ID	Protein Name	MW	% Coverage	<u>Peptides</u>	Comment
, , l	1262	6.3E-120	gi 20095118	hypothetical protein MK1682 [Methanopyrus kandleri AV19]	110919	26	view	
	1053	5.3E-99	gi 11935049	keratin 1 [Homo sapiens] indistinguishable	66027	24.8	view	probable contaminant
	778	1.5E-71	gi 114667176	PREDICTED: similar to Keratin, type I cytoskeletal 14 (Cytokeratin-14) (CK-14) (Keratin-14) (K14) [107386	16.4	view	probable contaminant
	535	3.2E-47	gi 28317	unnamed protein product [Homo sapiens] indistinguishable	59492	<u>17.4</u>	view	probable contaminant
	391	7.8E-33	gi 3318722	Chain E, Leech-Derived Tryptase InhibitorTRYPSIN COMPLEX	23457	26	view	enzyme used for digestion
	370	8.4E-31	gi 181402	epidermal cytokeratin 2 [Homo sapiens] indistinguishable	65825	9.8	view	probable contaminant
	340	9.4E-28	gi 84402	glutathione transferase (EC 2.5.1.18) - fluke (Schistosoma japonicum) (fragment) indistinguishable	25606	20.5	view	
	115	0.00003	gi 20093608	HSP70 class molecular chaperones involved in cell morphogenesis [Methanopyrus kandleri AV19]	42733	5.3	view	tentative, only 1 peptide
	65	3.2	gi 28590	unnamed protein product [Homo sapiens] indistinguishable	69250	2	view	tentative, only 1 peptide

В	1	MAPKSMLKHI	RNNVVWELPE	DYKGCMK VPG	RIYATEK LID	GMEK GVFDQV
_	51	ANVACLPGIY	GYSIALPDAH	YGYGFPIGGV	AAFDVEEGVV	SPGGVGYDIN
	101	CLAPGTKILT	EHGCWVKVED	LPKMLTDQKL	KVYDVDEGRE	DDSEIKFVME
	151	RGIEEDERAV	VLVTESGLTI	EGSEDHPVLT	PEGYVELGEI	EEGDLVVVYP
	201	FEGVEYEEKE	GTILDESDFE	DVDPQVLRYL	EERDLIPLRW	SDPKVGTLAR
	251	ILGFAMGDGH	LGEQAGRLTL	SFYGDERTLR	ELKRDLESLG	VKANLHVRKR
	301	RYEIETASGR	YEGEATSVEL	RVASRSFALL	MEKLGMPRGR	KVETPYKVPD
	351	WIKEAPLWVK	RNFLAGLFAA	DGSVVKFKRY	TPLPINLTQA	KVEELEENLR
	401	EFMNDVAKLL	REFGIETTLY	EVKSKKNVVY	KLAIVGEENI	KRFLGKVGYE
	451	YDPEKKVEGL	AAYAYLKLKE	RVKKDRKEAA	ETAAEVYEET	GSITKAHEAV
	501	ADVVNRRFVE	RVVYDGGISS	VRVPEDFPTF	ERFKEERVLA	GGFVIEEVVE
	551	VKGVEPEYDR	FYDIGVCHGA	HNFIADGVVV	HNCGVRVMK T	DLTEDDVRPK
	601	LRELLETIFR	NVPAGLGSRH	RRVR lstqel	RQVMLYGAEW	AVEEGFGFDE
	651	DLDHIESRGN	MTHAYETIGW	EEYGPR DDVA	SKRAIERGRP	QLGTLGSGNH
	701	FLEVQVVDEI	YDKEAAEKMG	IREEGQVTIM	VHTGSR GFGH	QVCSDHLRIM
	751	ERSMRDVERR	FGVRIPDR <mark>QL</mark>	ACAAMGTDEA	KRYFNAMNAA	ANYAFANR QM
	801	ISHWTR ESFV	EVFGDEYGDA	DDMGIEVIYD	IAHNMAKIEK	HPVDGEERWL
	851	VVHRKGATR A	FSEEALK KHG	EPVPFEGLPQ	PVLIPGDMGT	GSYILIGTEK
	901	AMEETWGSTC	HGAGR TMSRA	AAKR kfwged	VAR ELERQGI	LVK aasmpvv
	951	AEEAPPAYKD	VDEVVRAVAE	AGISDPVVRL	RPIGVVKG	

Fig. S1. Masspectrometric protein sequencing result. (A) The putative RNA ligase protein (shown in Fig. 1B) was cut out of the Coomassie stained protein gel and used for in gel tryptic digest and subsequent LC MS/MS analysis (1). The hypothetical protein MK1682 from *M. kandleri*, which is annotated as an inteincontaining precursor [molecular weight (MW) of 110 kDa] was identified with the sequence of 30 tryptic fragments that cover of the precursor protein sequence with 26%. All other masspectrometric hits are either obvious contaminants or the identification is tentative as only one identified tryptic fragment matches the hit. (B) The amino acid sequence for MK1682 is shown. The intein region is shaded in gray, and the identified tryptic fragments matching MK1682 are highlighted in bold red. The tryptic fragments cover 51% of the MK1682 extein sequence.

^{1.} Sauerwald A, et al. (2005) RNA-dependent cysteine biosynthesis in archaea. Science 307:1969–1972.

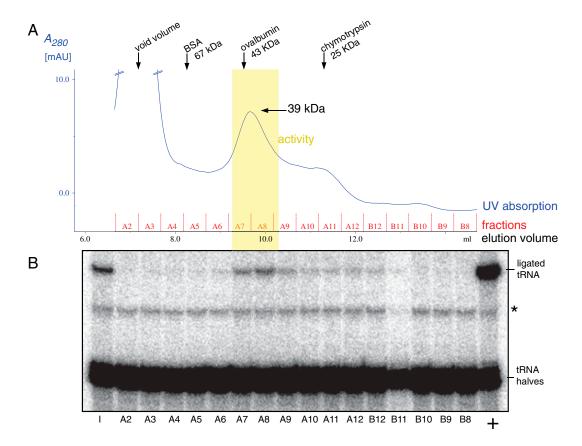


Fig. S2. Characterization of the Superdex 75 chromatographic step during the purification of the tRNA splicing ligase activity from *M. kandleri* extracts. (A) The elution profile for the Superdex 75 HR10/30 separation of the concentrated active Mono S elution fraction is shown. The UV absoption A₂₈₀ is plotted against the elution volume. The collected fractions are indicated. The Superdex column has been calibrated with the marker proteins BSA (elution volume 8.25 mL, native MW of 67 kDa), ovalbumin (9.55 mL, 43 kDa), and chymotrypsin (11.3 mL, 25 kDa). (B) RNA ligase activity assay for the Superdex 75 fractions. Lane I: concentrated, active Mono S elution fraction that was loaded on the Superdex 75 column. Lane A2-B8: Superdex 75 elution fractions, lane +: positive control by the action of T4 polynucleotide kinase/3′-phosphatase and T4 RNA ligase 1. The RNA ligase activity peak correlates to an elution volume of 9.9 mL. Hence, the native MW of the RNA ligase activity can be estimated to be 39 kDa. The calculated MW of MK1682 extein protein is 56 kDa. RtcB may be a very compact shaped protein—a phenomenon also observed for human RtcA—the 3′-terminal phosphate RNA cyclase, which has a native MW by gel filtration of 25 kDa (1) and a calculated MW of 39 kDa (2).

- 1. Filipowicz W, Strugala K, Konarska M, Shatkin AJ (1985) Cyclization of RNA 3'-terminal phosphate by cyclase from HeLa cells proceeds via formation of N(3')pp(5')A activated intermediate. Proc Natl Acad Sci USA 82:1316–1320.
- 2. Genschik P, Billy E, Swianiewicz M, Filipowicz W (1997) The human RNA 3'-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. EMBO J 16:2955–2967.