Supporting Information

Habtezion et al. 10.1073/pnas.1010833108

SI Materials and Methods

Microarray Analysis. Total RNA was extracted from isolated colonocytes using the RNeasy midi kit (Qiagen). The RNA was analyzed using an Applied Biosystems platform as recommended by the manufacturer. Two RNA samples were prepared for each of the four sample types ($K8^{+/+}$ untreated, $K8^{+/+}$ antibiotic-treated, K $8^{-/-}$ untreated, and $K8^{-/-}$ antibiotic-treated) for a total of eight samples. Each sample was assayed on duplicate microarrays, and results were quantile normalized per replicate array pair. Following normalization, data were filtered to remove "undetected" microarray probes (detection was defined as a signal-to-noise

ratio >3 on both arrays of a replicate pair). The correlation coefficient R of assay signal for each replicate array pair then was calculated to verify high correlation between replicate arrays. Differentially expressed genes were identified using a t test and filtering for P < 0.01. Differentially expressed genes were filtered further by applying a false-discovery rate procedure before analysis using the PathArt pathway database from Jubilant Biosys. Normalization, correlation analysis, and t tests were performed using MATLAB (Mathworks). Additional data plotting and visualizations were performed using Spotfire DecisionSite (TIBCO) and GeneSpring (Agilent Technologies).

Fig. S1. Resistance of keratin 8-null ($K8^{-/-}$) colon to apoptosis. Colon organ segments from $K8^{+/+}$ and $K8^{-/-}$ mice were cultured in the presence or absence of staurosporine (STS) or Fas for 1 h. The organ cultures then were processed for antibody staining of apoptotic cells (red) using the ApopTag Red In Situ Apoptosis Detection Kit and nuclei (blue). Note the resistance to apoptosis in $K8^{-/-}$ colons (*D–F*). *Insets* show magnified views. (Scale bar: 50 µm.)

Fig. S2. Colon organ cultures from T-cell receptor α -null (TCR $\alpha^{-/-}$) mice are more susceptible to apoptosis than are parallel cultures from TCR $\alpha^{+/+}$ mice. Colon organ cultures from TCR α WT or TCR $\alpha^{-/-}$ mice were maintained in the presence or absence of staurosporine (STS) or Fas for 1 h. The organ cultures then were processed for immunoblotting (A) or immunohistochemistry (B) using anti–cleaved caspase-7 (cCasp7) (red) and nuclei (blue). Note the lack of resistance to apoptosis in TCR $\alpha^{-/-}$ colons (A and image b in B). (Scale bar: 50 µm.) Casp, caspase 7; L, lumen.

Fig. S3. Inflammation in proximal and distal colon of $K8^{-/-}$ mice. Proximal (*A* and *C*) and distal (*B* and *D*) colons from $K8^{+/+}$ (*A* and *B*) and $K8^{-/-}$ (*C* and *D*) mice were isolated, fixed, and processed for paraffin embedding. Paraffin sections were stained with hematoxylin and eosin, and images were captured on a Zeiss Axiovert 200M microscope. Inflammation is more pronounced in the proximal colon(*C*) than in the distal colon (*D*) of $K8^{-/-}$ mice. The panels are representative of histologic analyses of colons isolated from at least eight $K8^{+/+}$ and eight $K8^{-/-}$ animals. (Scale bar: 200 µm.)

Fig. 54. Altered TLR9 expression in K8^{-/-} colon. (A) Total RNA from freshly isolated K8^{-/-} and K8^{+/+} colonocytes was used for microarray analysis. The table depicts Toll-like receptor (TLR) fold change between K8^{-/-} and K8^{+/+} colonocytes as determined by microarray analysis. (*B*) Frozen colon sections from 3-mo-old K8^{+/+} (*a* and *b*) and K8^{-/-} (*c* and *d*) microarray analysis (A), immunohistochemistry (*B*), and immunoblotting (*C*) in K8^{-/-} colons. Numbers in *C* identify individual mice. (Scale bar: 10 μ m.)

Fig. S5. Altered β4-integrin expression in colons of K8-overexpressing mice. Colon lysates from mice overexpressing human K8 (hK8 OE) and K8 WT mice were blotted with antibodies to β4-integrin, K8, and tubulin. Note lower expression of β4-integrin in hK8OE colons than in K8 WT colons. Because of the strong immune reactivity of the K8 antibody (Troma I), we diluted the tissue homogenate significantly to demonstrate the overexpression of K8. Several K8 species are noted because of proteolytic degradation, which occasionally occurs.

Gene ID	Gene name	Relative up-regulation*		
mCG8607.1	Mast cell protease 2	149.0		
mCG8610	Mast cell protease 1	145.3		
mCG133706	Mast cell protease 9	99.1		
mCG5445.2	Secretory leukocyte protease inhibitor	84.2		
mCG130832.1	Mast cell protease 4	58.7		
mCG21886.2	Carboxypeptidase A3, mast cell	27.8		
mCG14532.1	Phospholipase A2, group IIA	27.0		
mCG17632.2	Mast cell protease 7	25.2		
mCG65051.3	T-cell–specific GTPase	21.3		
mCG6027.2	la-associated invariant chain	16.4		
mCG4516.2	Granzyme A	15.8		
mCG14391.2	Glial cells missing homolog 1	15.6		
mCG17997.2	Indoleamine-pyrrole 2,3 dioxygenase	15.5		
mCG125443.1	Regenerating islet-derived 3-γ	15.4		
mCG7888.2	Calbindin 3	14.6		
mCG130827	Granzyme B	14.0		
mCG20526.2	Keratin complex 1, acidic, gene 13	13.6		
mCG8608.1	Mast cell protease 5	13.5		
mCG52384.1	Chemokine (C-C motif) ligand 7	13.2		
mCG11880.2	Malic enzyme	11.7		

Table S1.	The 20 genes most	t highly up-re	gulated in the K	8 ^{-/-} colon crypts

*Genes up-regulated in K8 ^{-/-} compared with K8 ^{+/+} colonocytes.

Table S2. R	Ribosomal DNA (rDNA) gene copies	per mg wet stool
-------------	---------------------	---------------	------------------

	Control	Antibiotic treated	P value
K8 ^{+/+}	$(1.33 \pm 0.03) \times 10^{8}$	$(1.51 \pm 0.42) \times 10^{5}$	0.002
K8 ^{-/-}	$(5.69 \pm 0.59) \times 10^{6}$	$(4.78 \pm 0.10) \times 10^{4}$	0.017

Stools were collected from three pairs of K8 $^{+/+}$ and K8 $^{-/-}$ mice treated with or without antibiotics. Results are based on TaqMan real-time PCR with universal bacterial primers. To estimate bacterial density, a conversion factor of five rDNA gene copies per genome (i.e., per one bacterium) was used as suggested for the gut microbiota (1).

1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177.

PNAS PNAS

Table S3.	Fold change	in expression	of selected	genes in	K8 ^{-/-} and	K8 ^{+/+} colonocytes as
determined	l by microarra	y analysis and	l real-time PCI	R		

Gene ID	Product	Primer	Microarray*	Real-time PCR
mCG19311.2	Survivin	5′-AGCATAGAAAGCACTCCCCT	+3.59	+5.68
		5'-CAATTGACTGACGGGTAGTC		
mCG19474.1	TRAF5	5'-CAGCGTGAAACAGAGGATCA	+1.84	+1.69
		5'-TGCTTAAACCGCTCTTCGTT		
mCG1848.2	Caspase 3	5′-ATGGGAGCAAGTCAGTGGAC	+1.04	-1.61
		5'-CGTACCAGAGCGAGATGACA		
mCG19990.2	Caspase 9	5'-TTCCCAGGTTTTGTCTCCTG	-1.35	-1.44
		5'-GGGACTGCAGGTCTTCAGAG		
mCG21273.2	TRAF1	5'-GATGGCTCAGGCAAGAAGAC	-3.13	-6.36
		5'-AGCATGCTCTCGGTTGTTCT		
mCG5961.2	Caspase 14	5'-GATGAGGTTGCTGTGCTCAA	-3.16	-2.45
		5'-GAACACATCCGTCAGGGTCT		
mCG9402.1	Peroxiredoxin 6	5'-TTGATGATAAGGGCAGGGAC	-6.44	-2.21
		5′-TTGATGATAAGGGCAGGGAC		
mCG2515.1	Clusterin	5′-AGAAAAAAACCAACGCAGAGC	-8.93	-3.39
		5'-ATGATGCCAGATGCCCGAGC		
mCG9908.1	Transglutaminase 3	5′-TGGCAGTAGGCAAAGAAGTC	-15.60	-14.42
		5'-ACGTTCACAGGCTTCCGCAC		

*Positive and negative numbers indicate genes up- and down-regulated, respectively, in $K8^{-/-}$ compared with $K8^{+/+}$ colonocytes. TRAF, TNF receptor-associated factor.

Table S4.	Microarray	data	analysis	using	Jubilant	PathArt	to	determine	the	most	significant	overrepres	ented
pathway l	between K8 ^{+/}	+ and	K8 ^{-/-} c	olonoc	ytes								

Jubilant physiology or disease	Overlapping genes	Total number of genes in pathway	Overlap P value
Apoptosis	46	160	3.1×10^{-5}
Growth and differentiation	39	135	$1.1 imes 10^{-4}$
Breast cancer	8	12	$1.1 imes 10^{-4}$
Cell cycle	20	57	$3.3 imes10^{-4}$
Diabetes type II	36	129	$4.0 imes 10^{-4}$
Parkinson disease	20	58	$4.2 imes 10^{-4}$
Atherosclerosis	29	110	$3.5 imes 10^{-3}$