
SUPPORTING  INFORMATION

Imaging  electrical  resonance  in  hair cells

Materials and Methods

Modeling electrical resonance in frog saccular hair cells

Current flowing across an intact sensory epithelium passes through hair cells or around them. We

constructed a corresponding equivalent-circuit model (Fig. 1A) comprising the electrical

impedances of the hair cell's apical and basolateral membranes as well as the shunt impedance.

The apical impedance accounted for the resistance and capacitance of the hair bundle, which

were added in series to the corresponding impedance of the basolateral surface. The individual

circuit element values used were as follows: leak resistance of the hair cell's apical surface,

1.0 GΩ; average conductance of the hair bundle, 0.7 nS; resistance of the hair cell's basolateral

surface, 800 MΩ; shunt resistance of the epithelial sheet, 20.0 kΩ; capacitance of the hair cell's

apical membrane including the hair bundle, 4.71 pF; capacitance of the hair cell's basolateral

membrane, 8.64 pF, and capacitance of the shunt pathway, 3.92 nF. To account for the delayed

conductance of Ca2+-sensitive K+ channels, we attributed a phenomenological inductance of

760 kH to the basolateral membrane.

We defined the impedances ZA, ZB, and ZS, in which the successive subscripts correspond

to the apical, basolateral, and shunt pathways:
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Here C  and R are capacitances and resistances and ω0 = f0/(2π) is the basolateral membrane's

resonant frequency. When driven by sinusoidal current stimulation 
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frequency ω, the voltage drops across the hair cell's apical and basolateral membranes are

respectively
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These voltages are complex quantities whose moduli 
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V = Re(V )2 + Im(V )2  and phase

€ 

φ = arg Im(V ) Re(V )[ ] are plotted as a function of frequency (Fig. 1B,C).

In vitro preparation of the bullfrog's sacculus

Each saccular macula was excised from an adult bullfrog (Rana catesbeiana) and transferred into

oxygenated saline solution of osmotic strength 240 mOsmol·kg-1 and containing 110 mM Na+,

2 mM K+, 1 mM Ca2+, 118 mM Cl–, 3 mM D-glucose, and 5 mM HEPES at pH 7.3. The otolithic

membrane was carefully removed after first lifting its edge with an eyelash. In experiments

featuring enzymatic digestion, the excised sacculus was incubated at room temperature for

20 min in saline solution supplemented with 50 µg/ml proteinase type XXIV (Sigma-Aldrich)

before removal of the otolithic membrane. When appropriate, iberiotoxin was used at a

concentration of 100 nM in saline solution.

After removal of the otolithic membrane, the sacculus was centered, apical surface

downward, over a 1.2 mm hole at the center of a 12 mm circular disk cut from a plastic

coverslip. The periphery of the sacculus was then glued to the disk with cyanoacrylate adhesive

(Iso-Dent, Ellman Instruments, Oceanside, NY). While the mounted sacculus floated on the

surface of saline solution in a Petri dish, the macula was stained for 20 min with a 100 µl drop of

saline solution containing 50 µg/ml of the potentiometric dye di-3-ANEPPDHQ (Invitrogen,

Carlsbad, CA) in 0.5% ethanol. After staining, the disk was rinsed to remove unbound dye.
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Although our measurements were not affected by fast, stimulus-evoked motion artifacts,

the mounted sacculus did exhibit slow drift at approximately 10 µm per hour in both the lateral

and the vertical direction. To obtain satisfactory images, we found it necessary to eliminate this

drift by encasing both sides of the preparation in low-melting-point agarose (type VII-A, Sigma-

Aldrich) cooled to room temperature. We deposited a drop of 3% agarose on the basal aspect of

the sacculus and placed a drop of 1% agarose on the apical surface. The disk was then mounted

as a partition separating two fluid-filled compartments in a recording chamber. The disk was

mounted so that the surface of the sensory epithelium faced upward, toward the microscope

objective (Fig. S1A).

Electrical stimulation

To evoke electrical resonance in hair cells, we passed a sinusoidal current of ±0.5 µA across the

entire saccular epithelium. The current was provided by a constant-current source (A395, World

Precision Instruments, Sarasota, FL) that was modulated by a sinusoidal voltage waveform. The

current was delivered to the preparation through Ag-AgCl electrodes placed in each chamber.

The voltage established across the saccular macula was monitored with a high input-impedance

differential amplifier (AM 502, Tektronix, Beaverton, OR). To protect the sensory epithelium

from the voltage transients that occurred when the current source was turned on or connected to

the preparation, we connected a 440 mF capacitor in parallel with the preparation. The capacitor

was switched out of the circuit before sinusoidal stimulation commenced.

Fluorescence imaging

For fluorescence excitation, we directed collimated 530 nm light from a 130 mW light-emitting

diode array (LEDC16, Thorlabs, Newton, NJ) to the sample through the epi-illumination port of

an upright microscope (Zeiss Axioskop 2, MPS Zeiss, Thornwood, NY; Fig. S1B). Current was

provided by a programmable, rapidly switched source (S4000, Advanced Illumination,

Rochester, VT) that delivered distortion-free square pulses of durations as brief as 1 µs. The
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green excitation light was filtered through a narrow bandpass interference filter (530 ± 5 nm) and

directed toward the preparation by a dichroic mirror with a cutoff wavelengh of 555 nm (Chroma

Technology, Bellows Falls, VT). Excitation illumination was concentrated and fluorescence

emission was collected by a 20X water-immersion objective lens of numerical aperture 0.95

(XLUMPlanFl, Olympus America, Hauppauge, NY). The fluorescence emission was filtered by

a long-pass absorption filter (OG590, Chroma Technology, Bellows Falls, VT), demagnified

0.63X to provide a field of view encompassing the entire sensory epithelium, and focused onto a

16-bit charge-coupled-device camera with an average readout noise of 6 e– (Orca R2,

Hamamatsu Photonics, Shizuoka, Japan). Strobed illumination, electrical stimulation, and image

acquisition were controlled by custom LabVIEW software (National Instruments, Austin,

Texas).

Stroboscopic video microscopy and data analysis

To visualize the fluorescence signal from the sacculus over the course of a single period of

sinusoidal electrical stimulation, we acquired fluorescence images with illumination pulses at

specific phase delays with respect to the stimulus waveform (Fig. S1C). One acquired frame thus

represented the fluorescence intensity pattern from illumination over a particular phase range in

the stimulus cycle. Because significant signal integration was needed to overcome shot noise, the

signal in each frame required the delivery of numerous illumination pulses.

The on:off duty cycle of the illumination pulses was 1:8 and the total number of pulses

per frame was adjusted so that the baseline fluorescence values approached, but avoided, camera

saturation. The order in which different phases were sampled was randomized to avoid

systematic artifacts. For each stimulus frequency assayed, all eight phases were imaged 64 times

apiece. Each of these trials included a control during which the preparation was imaged at the

same phase but no electrical stimulus was delivered. Prior to averaging, this background

fluorescence image was subtracted from the same trial's stimulus-evoked fluorescence image to

yield 64 images at each phase representing the fluorescence attributable to the electrical stimulus.
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These images were averaged and assembled into a single eight-frame stacks. One additional

frame, a second measurement at the initial phase, was appended to the image stack to improve

the fitting of data over a complete sinusoidal cycle. All data processing was performed with

Matlab (MathWorks, Natick, MA).

The fluorescence signal from each pixel in the resulting image stack was fit to the

function 
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F t( ) = A + Bt + C ⋅ cos t( ) + D ⋅ sin t( ) . The coefficients C and D could be used to deduce

the amplitude of a phase-shifted sinusoidal component, 
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E ⋅ sin(t + φ) = C ⋅ cos(t) + D ⋅ sin(t) , in

which 

€ 

E = C2 + D2  and 

€ 

φ = arctan C /D( ) . The amplitude E of a phase-shifted sinusoid was

used as a thresholding parameter for statistical analysis. Although the linear term of F(t) is not

orthogonal to the sine and cosine terms, inclusion of this term, whose fitted amplitude was

typically negligible, did not bias the extracted amplitude or phase.

Because images were acquired with high spatial resolution, our experiments yielded a

large amount of data; only a small fraction of this data, however, lay in the temporal dimension.

Stroboscopic imaging ultimately yielded a small number of cycles of raw data for each pixel in

the field of view. Although Fourier analysis of periodic data would potentially have yielded

values for the amplitude and phase that were less noisy than those extracted with a least-squares

fit, the paucity of data cycles compounded with sparse temporal sampling diminished this

advantage. Moreover, the large amount of raw data would have necessitated an impractically

long processing time had we not averaged the data prior to analysis.

Sinusoidal fluorescence activity could be observed in the stack of eight fluorescence

intensity images. To compare the amplitude of the fluorescence signal between different stimulus

frequencies, we identified the frame representing the peak relative fluorescence (ΔF/F) at each

frequency. For each of eight phase images, the relative fluorescence was defined as the

difference in fluorescence activity with respect to an initial reference frame, divided by the same

reference frame.

To quantify the evidence for electrical resonance in the averaged images, we analyzed the

two-dimensional standard deviation in values of the response phase. High-frequency spatial
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fluctuations in the phase were first removed by applying a 3×3-pixel sliding-window average to

each image. Least-squares fitting for each experiment then yielded a single image depicting the

phase. After discarding pixels outside the saccular macula, we employed Matlab's Image

Processing Toolbox function stdfilt.m to generate an image in which each pixel represented the

standard deviation of the phase within a 3×3-pixel analysis window centered on the

corresponding pixel in the original phase image. After generating a histogram counting all pixels

in this local standard-deviation image, we quantified the fraction of the histogram's area that was

bounded by the histogram envelope integrated from a standard deviation of 0 through a value of

€ 

π /5 . The standard-deviation histograms were by rule multimodal and featured local maxima at

nearly identical locations across all experiments. Integrating the area through 

€ 

π /5  therefore

fairly quantified the height of the lowest standard-deviation peak.

No spatial averaging was employed in mean phase calculations and log-likelihood

analyses. Analysis of circular statistical data was aided by functions from the Circular Statistics

Toolbox for Matlab (1). Unimodal probability-density functions were described by the

von Mises distribution
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f (θ) =
1

2πI0(κ)
eκ cos(θ −µ ) for 0 ≤θ ≤ 2π ,

in which µ is the mean, κ the dispersion, and 

€ 

I0(κ)  is the modified Bessel function of the first

kind and order zero. Unimodal fits to the data were obtained through maximum-likelihood

estimation of the mean and dispersion. For bimodal probability-density functions, we assumed a

five-parameter sum of two von Mises distributions,

€ 

f (θ) = p 1
2πI0(κ1)

eκ1 cos(θ −µ1 ) + (1− p) 1
2πI0(κ2)

eκ 2 cos(θ −µ2 )

in which p describes the relative proportions of the two populations. Because the convergence of

maximum-likelihood estimates of the parameters for such bimodal models is highly sensitive to

initial conditions (2, 3), the method is unattractive for serial comparison of noisy data sets. We

therefore employed a method-of-moments procedure that used six estimating equations to solve

for the five parameters (2). This procedure reliably yielded models that matched the visual
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features of datasets while leaving fixed the initial parameter estimates  of 

€ 

µ1 = π /2, 

€ 

µ2 = 3π /2 ,

€ 

κ1 =1, and 

€ 

κ2 =1.

To determine whether the data were better described by a unimodal or a bimodal

probability-density function, we compared the likelihoods that, given the data, each model would

have led to that observation. The likelihood is essentially the probability of the observation given

a particular underlying model. For binned histogram data, we considered a model's discrete

probability density function 

€ 

P(φ) = P1,P2,...,PN , in which N is the number of bins used for the

data histogram. This function gives the probability of observing a particular phase. The

likelihood, or probability that a dataset tabulated in a binned histogram would have been

observed given 

€ 

P(φ) , is

€ 

L = Pi
ni

i=1

N

∏ ,

in which ni is the number of counts in the ith bin of the histogram. The log-likelihood is therefore

€ 

ln L( ) = ni ⋅ ln Pi( )
i=1

N

∑ .

As a standard for selecting models we employed an information criterion (4) that

balances a model's maximized log-likelihood with its relative complexity. According to this

criterion, model a is preferable to model b if

€ 

ln ma

mb

 

 
 

 

 
 > ka − kb ,

in which ma and mb are the maximum-likelihood estimates of models a and b, and ka and kb are

the number of parameters in the respective models. Because maximum-likelihood estimation did

not reliably converge on reasonable parameters for a bimodal model, we computed the likelihood

for that model with parameters from the method-of-moments procedure. This likelihood was

compared to the maximum-likelihood estimate of a unimodal model to provide a metric for

bimodality. Because the parameters for the bimodal model were selected using a different

method from that used for the unimodal model, datasets that appeared purely unimodal

occasionally yielded a slightly higher log-likelihood for a unimodal than for a bimodal model.
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Because a unimodal von Mises function is simply a subset of bimodal von Mises functions, the

unimodal model should in theory never be preferable.
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Fig. S1. Experimental apparatus and measurement protocol. (A) As shown in a cross-sectional

diagram of the recording chamber, the saccular epithelium was mounted between two liquid-

filled compartments, each equipped with an electrode to pass transepithelial stimulus current.

(B) The optical system featured a bright, rapidly switched light-emitting diode (LED) that

transiently illuminated the specimen during a specific phase of electrical stimulation.

Fluorescence from the voltage-sensitive dye passed through the dichroic mirror to a charge-

coupled-device camera (CCD). Inset: In response to membrane-potential changes, the emission

and excitation spectra of di-3-ANEPPDHQ shifted in the indicated directions. (C) Three

command waveforms synchronized stroboscopic imaging with electrical stimulation. Positive

pulses controlled the camera's electronic shutter and thus determined the integration time for

each image. During the camera's integration period, a series of current pulses to the light-

emitting diode illuminated the sample at a particular phase of the sinusoidal electrical stimulus.

The order in which different phases were scanned was randomized. The number of stimulus

cycles over which the fluorescence was integrated varied linearly with stimulus frequency: two

cycles provided a robust fluorescence signal at 25 Hz, whereas twelve cycles were required at

150 Hz. The entire paradigm was repeated 64 times to yield the average response, then reiterated

without stimulation to produce a background image.
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