
Supporting Information
Gnerre et al. 10.1073/pnas.1017351108
SI Materials and Methods
Illumina Sample Prep Modifications (Brief Description). Construction
of fragment libraries followed standard protocols for shearing of
genomic DNA, end repair, adapter ligation, and size selection.
The enrichment PCR was performed using AccuPrime Taq DNA
polymerase High Fidelity (Invitrogen) with the following cycling
conditions: initial denaturation for 3 min at 98 °C, followed by 10
cycles of denaturation for 80 s at 98 °C, annealing and extension
for 90 s at 65 °C, and a final extension for 10 min at 65 °C.

Fosmid Jumping Methods (Brief Description, with Details in the
Following Paragraphs). Both methods make a 40-kb insert li-
brary in a Fosmid vector (1), which is transfected into Escherichia
coli. After growth, Fosmid DNA is purified from the host. In
Shearing And Recircularization after Cloning (ShARC), the
DNA is sheared and then size selected and recircularized, so that
fragments bearing both ends of the 40-kb insert, yet still of a size
suitable for Illumina sequencing, can be recovered by amplifi-
cation with PCR primers derived from the Fosmid vector ends.
In Fosmids for the explicit purpose of paired-end sequencing by
Illumina (Fosill), a site-specific nick is introduced near the
cloning site in the Fosmid vector and then propagated by nick
translation into the insert, where it is enzymatically cleaved to
a double-strand break. Recircularization of the resulting mole-
cule followed by PCR (as in ShARC) delivers appropriately sized
products bearing end sequences for Illumina sequencing.
ShARC. Fosmid libraries were constructed as follows, using the
pEpiFOS-5 Fosmid vector (EpiCentre Biotechnologies). Geno-
mic DNA (20 μg) was sheared with the HydroShear device
(GeneMachines) and end-repaired. Size-selected (35- to 45-kb)
fragments were blunt-end ligated to into the pEpiFOS-5 vector.
Primary packaged Fosmid libraries were transfected into E. coli
DH10B, spread at high density on LB plates containing 25 mg/
mL chloramphenicol and 5% sucrose, and incubated at 37 °C for
18 h to select for the Fosmid clones. Colonies were then scraped,
collected, and purified via a Plasmid Mega Kit (Qiagen). Fos-
mids were then sheared by HydroShear to an average size of 9 kb
to produce a subset of fragments containing the vector backbone
and several hundred bases of the genomic insert on either side.
The sheared fragments were concentrated with QIAquick
columns, gel size selected to 8–10 kb, purified, end-repaired,
phosphorylated, and cleaned up using SPRI (Solid Phase Re-
versible Immobilization) beads. The size of the remaining frag-
ments was assayed using an Agilent 2100 Bioanalyzer. Next,
large-scale recircularization was carried out with 6 μg of frag-
ment in a 3-mL reaction containing 100 μL of T3 DNA ligase in
a 1× rapid ligation buffer (NEB). The cleaned-up, eluted ligation
products (120 μL) were treated with 15 units of DNase (Epi-
centre) to remove linear DNA. Circularized fragments contain-
ing both Fosmid ends were selected by PCR using primers
derived from the pEpiFOS-5 sequences adjacent to the insert,
which were tailed with Illumina paired-end adapter sequences.
The PCR product was then gel size selected to 500–1,000
bp, enriched using standard Illumina paired-end primers, and
sequenced.
Fosill. The pFOS1 vector (1) was modified to include an Eco72I
blunt-end cloning site flanked by Illumina paired-end sequencing
primer sequences and two Nb.BbvC1 nicking endonuclease sites
oriented such that both Nb.BbvC1 nicks can be enzymatically
translated by DNA polymerase I into the cloned insert. Genomic
DNA (30 μg) was sheared and end-repaired. Size-selected (35-
to 45-kb) fragments were ligated to AatII and Eco72I double-

digested vector arms. Primary packaged Fosill libraries were
transfected into E. coli DH10B and amplified by overnight
growth at 30 °C in 750 mL 2× YT broth containing 15 μg/μL
chloramphenicol. Ten micrograms of purified Fosmid DNA
(Qiagen QIAfilter plasmid mega purification kit) was nicked by
digestion with Nb.BbvC1. The nicks were then translated by a 45-
min incubation at 0 °C with DNA polymerase I and dNTPs and
then cleaved by digestion with nuclease S1. End-repaired frag-
ments (∼100 ng) were circularized in a 500-μL ligation reaction
with T4 DNA ligase. The coligated jumping fragments were then
PCR amplified by inverse PCR out of the vector, using standard
Illumina paired-end enrichment primers. The PCR product was
size selected to 400–600 bp and sequenced.
Sequencing was carried out according to the manufacturer’s

recommended protocols, except as described above.

ALLPATHS-LG Algorithms.We refer to refs. 2 and 3 for background
on ALLPATHS and briefly recall its design here. ALLPATHS
first corrects errors in reads and then builds unipaths (2):

For given minimum overlap K, a branch in a genome is a place where
there is a sequence of K bases (K-mer) that appears in two or more
places and for which the next (or previous) bases are different. By
breaking the genome at every branch, we decompose it into a col-
lection of sequences that we call unipaths. These unipaths form the
edges of a sequence graph, by which we mean a directed graph whose
edges are sequences (4). In fact, the unipath graph is the best possible
assembly of the genome from reads of length K + 1, achievable in
theory given infinite coverage by perfect reads, which contain all
genomic (K + 1)-mers and hence reveal all branches.

Using read depth, ALLPATHS estimates the copy number of
unipaths. Then it chooses “seed” unipaths, that are ideally long, of
low copy number, and separated from each other by several ki-
lobases. Around each seed it builds a neighborhood, consisting of
unipaths that are iteratively linked to the seed by paired ends and
within ∼10 kb of it. Then it adds reads to the neighborhood by
reaching out from the given unipaths using paired ends. Within
each neighborhood, paired ends are then chosen (generally from
jumping libraries), and all paths from one end of the pair to the
other are found. These paths are glued together to form a graph,
which is the neighborhood (local) assembly. These local assem-
blies are then glued together to form a global assembly graph.
Contigs are extracted from this global assembly and then formed
into scaffolds, which constitute the final assembly.
Below we describe some of the changes to ALLPATHS that are

new to ALLPATHS-LG.
Error correction of reads from fragment libraries. The goal of error
correction in ALLPATHS-LG is to correct as many sequencing
errors as possible, while introducing as few new errors as possible.
Although this process leads to a simplification of the de Bruijn
graph that describes the data, our primary goal is not to simplify
the graph, but rather to make it more correct. Therefore, unlike
in Euler (4) and Velvet (5), we do not try to remove single-base
biological differences such as SNPs.
Error correction of reads from sheared jumping libraries is

discussed separately (below). Here we describe the ALLPATHS-
LG process for error correction of reads from fragment libraries.
It is done in two parts by the modules PreCorrect and Find-
Errors. In both modules, stacks of reads are built on the basis of
sharing of a 24-mer. Then base errors are identified and corrected
on the basis of frequencies and quality scores of base calls in
columns of the stack. This algorithm is described in more detail
below. The FindErrors module uses a contiguous 24-mer whereas

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 1 of 9

www.pnas.org/cgi/content/short/1017351108


PreCorrect uses a split 24-mer (a 25-mer with an unspecified
central base). PreCorrect corrects only the central column in
the stack. It is run before FindErrors and can correct some errors
not found by FindErrors. For example, a read having an error
every 23 bases could not be corrected by FindErrors. FindErrors is
run twice in succession to increase the number of errors that
are corrected. This procedure helps because each base error in
a read effectively removes the read from many read stacks, as the
number of valid 24-mers is reduced. If a read has more than a
few errors it will be harder to correct on the first pass, as the
number of valid stacks it belongs to is small. Once some cor-
rections are in place, the read will be present in more stacks and
further errors can be identified and corrected.
The chosen K-mer size of 24 strikes a balance, as follows. The

larger K is, the more likely a K-mer is to be unique in the genome
and hence give rise to a “pure” stack, i.e., one containing reads
from only one locus on the genome. Conversely, decreasing K
increases the sensitivity of error correction by allowing the cor-
rection of reads having more errors.
The error correction algorithm is divided into three phases: the

recommendation phase, where a set of recommended changes is
compiled; the correction phase, where these changes are con-
sidered and possibly carried out; and finally the screening phase,
where reads that (after error correction) contain unique 24-mers
are discarded. The recommendation set is computed by con-
structing, for each 24-mer in the reads, the aligned stack of all of
the reads containing that 24-mer. Stacks of fewer than six reads
are ignored. Then, for the central base column in PreCorrect and
for all of the base columns off the 24-mer in FindErrors, the
quality scores are summed separately for each of the four po-
tential calls. The base call with the highest quality score sum is
declared the winner, but only if the sum is ≥60. Any other base
call, with no more than one call of quality 20 or more and quality
score sum less than one-quarter that of the winner, is declared
a loser call. We note that a SNP supported by two Q20 bases
would be protected from correction by this rule. If there is
a winner call, a correction recommendation is issued for each of
the loser calls. All of the recommendations for all of the reads
are collected before moving on to the correction phase. In
PreCorrect, the algorithm looks only at the aligned column of
bases in the center of the 25-mer, and hence there is at most one
recommendation per read base. Here, corrections in a read are
made only if they are at a distance of >12 bases from each other
(i.e., a correction is not applied when the flanking 12-mers that
built the stack are themselves suspect). In FindErrors, because
each read appears in as many reads stacks as its number of K-
mers, there are, in general, a set of recommendations associated
with any read base. Here corrections are made if and only if all of
the various correction recommendations for the same base agree
with each other. This conservative consensus mechanism is de-
signed to minimize the number of false positives in the error
correction. Whenever a correction is adopted, the associated
quality score for that base is set to 0.
Fragment pair filling. There are significant advantages to using
a larger K-mer size in the assembly process, but as K approaches
the read length, there is danger of losing connectivity among the
reads, as there is lower probability that reads will overlap by K
bases. So that we can use a larger K, we require as input a library
of paired reads from fragments whose size is slightly less than
twice the read length and then attempt to fill in any gap in se-
quence between the ends of a given pair. This method allows us
to treat the entire “filled fragment” as a single long “superread.”
This process is carried out after error correction.
We note that a pair of sufficiently long and accurate reads from

appropriately sized fragments could be directly joined to each
other along their overlap. The longer the reads are, the more vi-
able such a strategy becomes. For 100 base reads, such a direct
joining strategy is impractical, because to avoid wrong joins, the

overlap between the two reads would need to be reasonably long
(say 20 bases), and moreover to avoid collapsing tandem repeats
we would need to be confident that the reads do overlap by this
much. For example, if fragments were normally distributed as
130 ± 25, then ∼2.5% of pairs would overlap by <20 bases, and
worse, the mean superread length would be only 130 bases. With
a tighter size distribution one could increase the mean, but such
tight distributions are difficult to achieve in the laboratory.
Instead, we use a third read from the entire set of fragment

reads to join a given pair together. This method increases the
likelihood that the join is correct. To further reduce the in-
cidence of error, we look not just for a single read, but for
a second fragment read pair in which one of the reads aligns
perfectly across the gap or overlap in the first pair (Fig. S1A). To
be joined, the patching read must overlap perfectly with each of
the two reads by at least 24 bases. It must also have only one
possible alignment across the gap, and the partner of the
patching read must also align perfectly, at the appropriate dis-
tance, to the second pair. The patching read either confirms the
overlap in the original pair or, in the case of a gap, provides the
missing bases.
More than one valid patching read may be found, and usually

they all result in the same filled fragment. Occasionally alter-
native joins are found and all are considered valid—i.e., the same
fragment pair can result in more than one filled fragment (Fig.
S1B). We note that the fragment filling conditions are quite
stringent. The process has a cleansing effect on the data as it
tends to cull out pairs that still have errors after error correction.
Typically 70–75% of pairs that survive error correction are filled,
and of these ∼0.05% have multiple closures.
Unipath creation. This method is as in ref. 3; however, now we take
as input to the process the filled fragment pairs rather than the
error-corrected reads.
Error correction of reads from sheared jumping libraries. In reads from
jumping libraries that are created by blunt-end self-ligation of long
fragments, followed by shearing, such as those made using the
Illumina protocol, the circularization junction may appear within
a read. Such a read is chimeric, containing two parts, separated on
the genome by somewhat less than the fragment length (e.g., ∼2
kb). Our strategy is to identify this junction point and then trim off
the part of the read to its right, although these bases could in
principle be exploited by the algorithm.
We note that because of the junction points, sheared jumping

reads cannot be error corrected in the samemanner as reads from
fragment pairs. Instead ALLPATHS-LG has a combined process
that both corrects errors and trims back after junction points. This
process works by aligning the sheared jumping reads to the
unipaths. By seeding on the first 12-mer in each read, we define
candidate alignments. This is a viable strategy because the first 12
bases in a given read are nearly always correct and, because the
unipath graph collapses repeats, a given read will in general have
a relatively small number of candidate alignments, although
usually more than one.
Each candidate alignment is then extended, following the graph

where the end of a unipath is reached, and not allowing gaps.
During the extension process, we apply a sliding-window error
threshold to identify a possible junction point within the read: As
we move forward along the read, if we find more than n base
mismatches in a window of m bases between the read and uni-
path, we back off b bases before the first error in the window and
call this the “trusted length” of this alignment. These are tunable
parameters; the values used in ALLPATHS-LG are n = 3, m =
8, and b= 3. We compute the maximum of these trusted lengths,
reasoning that the junction point (if any) should lie beyond it.
Each candidate alignment is then scored by summing the base

quality scores of any mismatches along the maximum trusted
length. The best scoring alignment is selected, but only if it is
better than the next best score by a significant amount; here, we

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 2 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/content/short/1017351108


used a quality score difference of 20, yielding in principle a ∼99%
confidence in choosing the winner. We then replace the entire
read, including the section beyond the junction point, with the
unipath sequence it aligned to—thus removing the invalid se-
quence and error correcting at the same time.
Gap patching (Fig. S3).ALLPATHS-LG patches gaps at two points,
after generation of initial unipaths, and after generation of initial
scaffolds. These two processes are similar, and we outline here the
key steps of the underlying common method (the steps reflect the
key difficulty of the problem, which is that gaps are often asso-
ciated with low coverage and/or low quality sequence, and thus it
may be only barely possible to cross them): (i) Reads are placed
on the unipaths or contigs (in the case of scaffolds). (ii) In the
case of scaffolds, there is already a natural order on the contigs.
For unipaths, we use the read placements of step i to define
a putative order of the unipaths, in effect scaffolding them. (iii)
Each consecutive pair of unipaths or contigs defines a gap. (iv)
The read placements of step i allow us to define a pool of ori-
ented reads that might land in a given gap. (v) A first alignment
of reads to each other is performed. For each gap, we seed on
12-mer perfect matches to find gap-free alignments between
reads in the pool, discarding those alignments having an error
rate >20% or whose aligned portion is <40 bases. (vi) Errors in
reads are corrected. For each read in the pool, we form the stack
of reads that are aligned to it. We traverse the columns of this
stack, allowing the bases in the column to vote according to their
quality scores. So long as the runner-up base has score less than
a fixed constant (200), we change the base on the read. (vii) To
cleanse the reads, we find all of the 16-mers S that could be party
to a bridge across the gap and then trim each read from the left
and the right so that it contains only 16-mers from S. (viii) The
reads are then aligned to each other. We find all perfect overlaps
of length ≥15 between the reads. (ix) To identify closures, we try
to cross the gap by walking along perfect overlaps between the
reads. Multiple closures are allowed; however, if >10 are found,
the gap closing operation is aborted. The computation is boun-
ded by an internal counter to prevent “blowing up.” (x) In the
unipath case, all closures are incorporated into the unipath
graph. In the scaffold case, closures outside the predicted gap
size are excluded, and the remaining closures are merged into
a common sequence that may contain mismatch ambiguities,
thus providing a single closure of the gap with some ambiguities
labeled and in some cases new errors. Sequence introduced in
patches during the scaffolding step typically comprises ∼2% of
the assembly.
Flattening. As in ALLPATHS, the ALLPATHS-LG assembly pro-
cess yields an assembly graph, which can be locally complicated,
and this graph is then turned into scaffolds that are inherently
linear. To do this, ALLPATHS 2 defined a contig break at each
branch point in the graph. This method worked on bacteria but
would not work well on polymorphic genomes in which branch
points occur at great frequency. Therefore in ALLPATHS-LG
the graph goes through an initial flattening phase in which
branches arising from single-base mismatches are converted into
ambiguous base codes. This phase does not lose information;
however, ALLPATHS-LG also flattens some other features in-
cluding short indels, and this flattening does result in information
loss. In some cases an error is introduced or an allele is lost. A
better approach would retain this information and represent it as
ambiguities in the final assembly.
Scaffolding. In the scaffolding process, we use read pair data from
jumping libraries to connect assembled contigs into scaffolds. We
found that the greatest challenge in scaffolding the data of this
work originated from artifacts present in the read pair data. First
consider the fragment size distribution for a given library, which
we compute by aligning read pairs to unipaths. It is approximately
Gaussian, but often has asymmetry and/or secondary peaks.
Second, in the construction of sheared jumping libraries, after

shearing of circles, some fragments are selected that donot contain
the ligation junction point, resulting in read pairs having reverse
orientation and short separation (Fig. S2E).
We address both of these issues by using a more robust sta-

tistical approach to deal with the inconsistencies in linkage evi-
dence from individual read pairs. First, a link between two
scaffolds is defined by a read pair, with each read aligned to one of
the scaffolds. The alignment and separation statistics of paired
reads (mean and SD) imply the orientation and gap size between
the scaffolds. Next we define a bundle to be a subset of links
inducing consistent orientations and gaps between two scaffolds.
We cluster the links into bundles (details omitted) and then score
the bundles as follows: given a bundle of n links fμi; σigni¼1; where
μi and σi denote the gap size and SD implied by a link, we
compute an expected gap size and standard deviation ðμ; σÞ
between scaffolds by 1

σ2 ¼ ∑n
i¼1

1
σ2i

and μ
σ2 ¼ ∑n

i¼1
μi
σ2i
. We assign

a score s to each bundle by

s
�fμi; σigni¼1

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1

�
μi − μ

σi

�2

·

s

This definition is designed to provide an estimate of how far from
normal the distribution of the n implied gap sizes in the bundle
truly is (s = 1 if the distribution of the gaps fμi; σigni¼1 is a perfect
Gaussian). Then we define the weight of a bundle by

w
�fμi; σigni¼1

� ¼ ffiffiffi
n

p
·exp

�
− n·s

�fμi; σigni¼1

��
:

Finally we choose the heaviest bundle to imply a final orientation
and the gap size between two given scaffolds. The scaffolding
structure is represented by a directed graph S. The vertices of S
are oriented scaffolds. Two vertices are connected by an edge if
there is a winning bundle between them. The initial scaffolding
graph consists of assembly contigs.
The scaffolding algorithm is an iterative process in which

scaffolds are incrementally merged and fixed. The merging
process uses two separate heuristic methods. In the first one, we
merge unambiguously closest neighboring scaffolds, determined
by the graph topology and the implied gaps. In the second one, we
merge the most strongly connected pairs of scaffolds, determined
by bundle weights. In the fixing stage, we tag scaffold regions
having low physical coverage and break them apart.

Reference Sequences. For mouse, we used the NCBI build 37 ref-
erence sequence,which is frommouse strainC57BL/6J, as areall of
thedata for themouse assemblies.We removed chromosome (chr)
Y and the “random” records. For human, with one exception
(explained below), we used a reference based on the Genome
Reference Consortium (GRC) build. We removed the random
records. For uniformity, we also removed chr Y, although some of
the sequence came from males. We added the mitochondrial
genome. There was an exception: For the analysis of contig ac-
curacy for human assembly 1, we used both theGRC reference (as
above) and thematernal reference sequence from http://alleleseq.
gersteinlab.org, described in Rozowsky et al. (“Coordination be-
tween allele-specific expression and binding in a network frame-
work”) (under review), based on data from the 1000 Genomes
Pilot Project (6), aligned to NCBI human build 36. We further
adapted this sequence by adding homozygous SNPs found in
DePristo et al., “A framework for variation discovery and geno-
typing using next generation DNA sequencing data” (under re-
view). We note that the datasets used to define the NA12878
reference are disjoint from the dataset of this work.
There was one other exception. For the analysis of segmental

duplications, we used whatever reference sequences had been
used to create the segmental duplication databases: the NCBI
build 36 sequences for human and mouse.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 3 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=SF2
http://alleleseq.gersteinlab.org
http://alleleseq.gersteinlab.org
www.pnas.org/cgi/content/short/1017351108


Description of How Contigs Were Aligned to the Reference. We
aligned the contigs in such a way that a given contig could be
broken into more than one piece (reflecting a misassembly or
bona fide difference with the reference), so that a given contig (or
contig piece) could go to only one location and so that alignments
of contigs (or contig pieces) having an error rate too high to be
biologically correct were discarded. In more detail, we used
the program QueryLookupTable (ref. 7, also distributed with
ALLPATHS-LG), with arguments K = 12, MM = 12, MC =
0.15, MF = 500:5000:500, and ALIGN_UNALIGNED_BITS =
True. With these arguments the code would break contigs into
up to three separate pieces in different positions on the refer-
ence. Only the best alignment of a given contig (or contig piece)
was used, or, in the case of a tie, one was chosen at random.
Alignments were scored according to their “reciprocal match
rate,” defined to be the reciprocal of the weighted mean of the
perfect match lengths in the alignment, more precisely Σ(vi + 1)/
Σ(vi + 1)2, where vi are the lengths of the perfectly matching
segments or 1, in case of mismatches. Alignments having re-
ciprocal match rate >0.5% were discarded. In rough terms, this
procedure had the effect of discarding alignments having more
than one mismatch per 200 bases, which were unlikely to be
genomically correct. However, with this procedure, large num-
bers of errors (for example, arising from assembly defects) would
not necessarily cause an alignment to be rejected, provided that
enough of the alignment was in long perfect matches.

The Two YHAssemblies.The publication of the SOAP YH assembly
in ref. 8 refers to the availability of the assembly in two locations.
We observed that the assemblies in these two locations are in
fact different:

i) GenBank ADDF010000000. This assembly is also available
at ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/verte-
brates_mammals/Homo_sapiens/YH1/Primary_Assembly/
unplaced_scaffolds/FASTA/unplaced.scaf.fa.gz.

ii) http://yh.genomics.org.cn. We found this assembly at ftp://
public.genomics.org.cn/BGI/yanhuang/Genomeassem-
bly/asm.yanh.scafseq.closure.gz.

The contigs from (ii) are about three times longer than those
from (i). We therefore used (ii) in our analyses.

Treatment of Assembly Ambiguities in Assembly Evaluation. To un-
derstand the extent of ambiguity within a given assembly, we
count the number of “ambiguous bases,” which we define to be
the sum over all choices {x1, . . . , xn} of the maximum of the
lengths of the xi. Thus the example

. . . ATC{A, T}GGTTTTTTT{, T, TT}ACAC . . .

would be counted as having three ambiguous bases. For a known
genome, we can also score the accuracy of a given part of an
assembly in alignment to the reference. To do so, for each choice
we pick the sequence that best matches the reference.

Known Heterozygous Indels in NA12878. We start from the list
of events at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/
release/2010_07/low_coverage/sv/CEU.low_coverage.2010_06.
deletions.genotypes.vcf.gz. We selected those events that are
asserted to be heterozygous in NA12878, which were not tagged
as IMPRECISE, and which were assigned a Phred quality score
of at least 40.

Application of SOAPdenovo and ABySS to the Mouse Dataset. Data
preparation. We started from 47 pairs of input files read1.fastq,

read2.fastq. EcoP15I reads were trimmed to include only the first
26 bases and the Fosmid reads were trimmed to remove the first
4 bases.
SOAPdenovo. The 47 read1 and 47 read2 fastq files were merged
into 4 read1 and 4 read2 fastq files on the basis of the four library
types. The SOAP authors provided a perl script (duplication.pl) to
remove duplicate paired reads from each library type:

duplication.pl ShearedJumps.read1.fastq ShearedJumps.read2.
fastq ShearedJumps.read1.fastq.dedup ShearedJumps.read2.
fastq.dedup ShearedJumps.dedup_stats

Next read correction was done on the fragment pair reads in
two steps via the modules KmerFreq and Corrector. The SOAP
authors provided new error correction code along with the exact
parameters to use:

kmer_freq_pfile reads.in -k 17 -f 1 -t 48 -p mouse
correct_error_pread mouse.freq.gz reads.in -k 17 -x 8 -r 50 -l
10 -c 5 -p mouse -f 1 -j 1 -t 48

The configuration file required by SOAPdenovo was con-
structed. One entry in the configuration file is average insert size.
Because the range of insert sizes in the jumping libraries is from
1.8 to 2.8 kb, the formerly merged fastq files (before dedupli-
cation) were split back out into separate read1 and read2 fastq
files on the basis of insert sizes. Average insert size for each library
was set (using avg_ins=) in the configuration file. Orientation of
read pairs was set in the configuration file using reverse_seq =
0 for the fragment and Fosmid libraries and reverse_seq = 1 for
the jumping libraries. Fragment pairs were used for both the
contig assembly and scaffold assembly (asm_flags = 3) whereas
the jumping and Fosmid libraries were used for the scaffold
assembly only (asm_flags = 2). Finally, order of libraries was set
from smallest insert size first (fragment pairs rank = 1) to largest
insert size last (Fosmid rank = 5). EcoP15I reads were excluded
from the SOAPdenovo assembly because their length (26 bases)
was shorter than the suggested K-mer length (61) to use in
the assembly. The SOAP authors provided an in-house SOAP-
denovo version (SOAPdenovo63mer-v1.05) capable of supporting
a K-mer length up to 63. A K length of 61 was suggested along
with exact parameters to use at each of the four SOAPdenovo
assembly stages:

SOAPdenovo63mer-v1.05 pregraph -s config.file -K 61 -o
20100913 -a 300 -p 16 –R
SOAPdenovo63mer-v1.05 contig -g 20100913 -M 2 –R
SOAPdenovo63mer-v1.05 map -p 16 -s config.file -g 20100913
SOAPdenovo63mer-v1.05 scaff -F -g 20100913

The resulting SOAPdenovo scaffolds were input into the Gap-
Closer programwith the aim of closing gaps that remained after the
scaffoldingstage.TheGapCloserprogramfailed tocomplete intime
for manuscript release (total run time is predicted to be ∼6 wk), so
the SOAP assembly is based on the final output of SOAPdenovo.
Total wall clock time from deduplication through SOAPdenovo
was 64.2 h.
ABySS. abyss-pe (version 1.2.1) was compiled, enabling max-k of 48
and incorporating openmpi-1.4 and Google sparsehash (revision
52) patched with deallocate.diff. abyss-pe was run using a k-mer
size (-k) of 48; 16 processors (np = 16); a trim quality threshold
(-q) set to 10; sort –T to a provide a large tmp directory space;
and minimum number of pairs to scaffold (n =) set to 20 for
fragment pairs, 100 for jumps, and 10 for Fosmids. Total wall
clock time for assembly was 105 h.

1. Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid
sized human DNA inserts in an F factor based vector. Nucleic Acids Res 20:1083–1085.

2. Maccallum I, et al. (2009) ALLPATHS 2: Small genomes assembled accurately and with
high continuity from short paired reads. Genome Biol 10:R103.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 4 of 9

http://yh.genomics.org.cn
www.pnas.org/cgi/content/short/1017351108


3. Butler J, et al. (2008) ALLPATHS: De novo assembly of whole-genome shotgunmicroreads.
Genome Res 18:810–820.

4. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA 98:9748–9753.

5. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res 18:821–829.

6. The 1000 Genomes Project Consortium (2010) A map of human genome variation from
population-scale sequencing. Nature 467:1061–1073.

7. Brockman W, et al. (2008) Quality scores and SNP detection in sequencing-by-synthesis
systems. Genome Res 18:763–770.

8. Li R, et al. (2010) De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res 20:265–272.

Fig. S1. The ALLPATHS-LG process of fragment pair filling. (A) The algorithm tries to close the black pair. It finds another pair (red) that perfectly overlaps the
black pair and closes its gap. Sequence from the red pair is inserted into the gap in the black pair, thus closing it. (B) Again the algorithm tries to close the black
pair, but this time there is a SNP (A or T) between its gap. Two red pairs both overlap the black pair perfectly, providing two separate solutions to its closure,
both of which are retained.

BIOTIN

BIOTIN BIOTIN

a b

c d

e

Fig. S2. Artifacts associated with sheared jumping libraries, following the Illumina protocol (1). (A) DNA is sheared and size selected, yielding linear fragments.
(B) The ends of these fragments are biotinylated and then the fragments are circularized and sheared. Fragments of the circles are then enriched for those
containing biotin. The ideal fragment is shown in C. Two reads enter from opposite sides but do not read the junction. In D, one of the reads passes through
the junction point, creating a “chimeric” read. In E, the ends of a fragment that do not contain a junction point are read, yielding a read pair in opposite
orientation to that of C and whose true separation on the genome is small.

1. Bentley DR, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.

Fig. S3. Gap patching. See SI Materials and Methods for ALLPATHS-LG Algorithms, Gap patching. (A) Steps i–iv define a pool of oriented reads that might land
in a given gap. (B) Steps v and vi define a stack of reads that align to a given read (top); the dotted line shows a column of the stack that “votes” to determine if
the corresponding base on the given read is to be changed. (C) Step vii: All 16-mers that could be party to a bridge across the gap are found; dotted portions of
reads are 16-mers that are excluded and then trimmed off the reads. (D) Steps viii–x: Closures of the gap are found by walking across the gap using perfect
overlaps between the reads.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 5 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/content/short/1017351108


Table S1. Experimental data for human and mouse assemblies (expanded from Table 2)

Species Library

Size, bp

Read length

Sequence coverage, ×
Physical

coverage, ×Mean SD All PF Aligned Unique Valid

Human Fragment 155 26 101 51.9 41.8 38.4 37.9 36.5 27.8
Jumping 1 2,283 221 101 21.2 19.0 15.7 14.8 9.2 103.4
Jumping 2 2,803 271 101 24.7 21.7 18.0 16.9 10.5 146.0
Fosmid 1 (ShARC) 35,295 2,703 76 0.9 0.6 0.5 0.1 0.1 20.0
Fosmid 2 (ShARC) 35,318 2,759 101 4.4 3.4 2.5 0.3 0.2 29.5
Total 103.1 86.5 75.1 70.0 56.5 326.7

Mouse Fragment 168 32 101 58.6 53.1 49.6 46.6 45.3 37.6
Jumping 1 1,834 182 101 20.0 17.4 14.7 13.6 8.1 73.2
Jumping 2 2,289 212 101 17.6 13.9 12.2 10.8 6.9 78.2
Jumping 3 2,794 220 101 10.4 9.4 8.2 7.6 4.9 67.7
Long jumping 1 8,611 629 26 2.1 1.7 1.7 1.1 0.6 106.4
Long jumping 2 6,187 381 26 3.7 1.7 1.7 1.0 0.5 56.4
Long jumping 3 6,185 347 26 2.8 2.1 2.1 1.3 0.7 78.4
Long jumping 4 7,030 337 26 1.9 1.7 1.6 1.2 0.7 94.9
Long jumping 5 10,009 721 26 3.0 2.1 2.1 0.9 0.4 72.2
Fosmid (Fosill) 38,453 3,557 76 1.4 1.1 1.1 0.1 0.1 23.1
Total 121.5 104.2 95.0 84.2 68.2 688.1

Some of the information in Table 1 is expanded. To assess the properties of the data, independently of assembly, reads were aligned to the references using
Maq (1), after trimming as follows: Jumping library reads were trimmed to 36 bases, but counted as full length for purposes of computing coverage; long
jumping (EcoP15I) reads were trimmed to 26 bases; Fosmid (Fosill) reads were trimmed to remove 4 bases from the left; and Fosmid (ShARC) reads were
trimmed to remove 28 bases from the left. Library: See Table 1. Size: Mean and SD of observed fragment size distribution. Read length, Sequence coverage,
and Physical coverage: see Table 1.

1. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 6 of 9

www.pnas.org/cgi/content/short/1017351108


Table S2. Illumina and SRR identifiers for sequence generated

Species Library type
Illumina lane
identifier

SRR run
accession no.

Human Fragment 202PBABXX.1 SRR067787
202PBABXX.2 SRR067789
202PBABXX.3 SRR067780
202PBABXX.4 SRR067791
202PBABXX.5 SRR067793
202PBABXX.6 SRR067784
202PBABXX.7 SRR067785
202PBABXX.8 SRR067792
61PHDAAXX.6 SRR067577
61PHDAAXX.7 SRR067579
61PHDAAXX.8 SRR067578

Jumping 1 2025JABXX.1 SRR067771
2025JABXX.2 SRR067777
2025JABXX.3 SRR067781
2025JABXX.4 SRR067776

Jumping 2 2025JABXX.5 SRR067773
2025JABXX.6 SRR067779
2025JABXX.7 SRR067778
2025JABXX.8 SRR067786

Fosmid 1 613YAAAXX.1 SRR068214
613YAAAXX.2 SRR068211

Fosmid 2 2025TABXX.6 SRR068335
Mouse Fragment 6141AAAXX.1 SRR067634

6141AAAXX.2 SRR067650
6141AAAXX.3 SRR067648
6141AAAXX.4 SRR067622
6141AAAXX.5 SRR067649
6141AAAXX.6 SRR067641
6141AAAXX.7 SRR067670
6141AAAXX.8 SRR067636
613F0AAXX.1 SRR067612
613F0AAXX.2 SRR067616
613F0AAXX.3 SRR067615
613F0AAXX.4 SRR067623
613F0AAXX.5 SRR067605
613F0AAXX.6 SRR067646
613F0AAXX.7 SRR067633
613F0AAXX.8 SRR067620
613F1AAXX.1 SRR067606
613F1AAXX.2 SRR067611
613F1AAXX.3 SRR067625
613F1AAXX.4 SRR067601
613F1AAXX.5 SRR067624
613F1AAXX.6 SRR067645
613F1AAXX.7 SRR067635
613F1AAXX.8 SRR067653

Jumping 1 61NDRAAXX.1 SRR067607
61NDRAAXX.2 SRR067669
61NDRAAXX.3 SRR067603
61NDRAAXX.4 SRR067660
61NDRAAXX.5 SRR067619
61NDRAAXX.6 SRR067658
61NDRAAXX.7 SRR067604

Jumping 2 61NGGAAXX.2 SRR067631
61NGGAAXX.3 SRR067639
61NGGAAXX.4 SRR067657
61NGGAAXX.5 SRR067610
61NGGAAXX.6 SRR067654

Jumping 3 61NCCAAXX.1 SRR067644
61NCCAAXX.2 SRR067618
61NCCAAXX.3 SRR067652
61NCCAAXX.4 SRR067663

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 7 of 9

www.pnas.org/cgi/content/short/1017351108


Table S2. Cont.

Species Library type
Illumina lane
identifier

SRR run
accession no.

Long jumping 1 207HCABXX.1 SRR067823
Long jumping 2 207HCABXX.2 SRR067839
Long jumping 3 207HCABXX.3 SRR067846
Long jumping 4 207HCABXX.5 SRR067858
Long jumping 5 207HCABXX.8 SRR067830
Fosmid 61NBYAAXX.1 SRR067609

This table is synchronous with Table S1. The third column defines the lanes that were sequenced using the
notation flowcell.lane to denote particular lanes from a flowcell. Flowcells suffixed AAXX were sequenced on
the GAII whereas those suffixed ABXX were sequenced on the HiSeq. The fourth column gives the Sequence
Read Archive (www.ncbi.nlm.nih.gov/sra) SRR accession number for each lane.

Table S3. Repeat content of gaps in ALLPATHS-LG assemblies

Genome Category % of genome % covered % of gap bases Enrichment in gaps

Human LINE 22.1 85.4 36.1 1.6
LTR retrotransposon 9.2 93.8 6.4 0.7
SINE 13.8 83.2 25.8 1.9
Simple repeats 0.9 80.8 2.0 2.2
DNA transposon 3.5 95.6 1.7 0.5

Mouse LINE 20.4 66.7 59.9 2.9
LTR retrotransposon 10.8 82.7 16.5 1.5
SINE 7.9 95.5 3.1 0.4
Simple repeat 2.5 87.4 2.8 1.1
DNA transposon 1.1 97.9 0.2 0.2

Repeat content of ALLPATHS-LG gaps is shown, based on the RepeatMasker track from http://genome.ucsc.
edu/cgi-bin/hgTables. Category: repeat class, excluding those occupying <1% of both genomes, including long
interspersed elements (LINE), short interspersed elements (SINE), and long terminal repeat (LTR) retrotranspo-
sons (1). % of genome: Fraction of genome in the given category. % covered: Fraction of bases in the given
category that are covered by the assembly. % of gap bases: Fraction of gap bases that are in the given
category. Enrichment in gaps: (gap bases in category)/(genome bases in category), divided by (all gap bases)/
(all genome bases).

Table S4. N50 contig size (kilobases) for mouse chr1 assemblies with reduced
coverage

Fraction of jump coverage used

50% 75% 100%

Fraction of fragment
coverage used

50% 18 19 19
75% 22 23 23

100% 24 25 26

Mouse reads (as described in Table 2) were selected on the basis of alignment to chromosome 1
and then randomly subsampled to 100% (full sample), 75%, or 50% of the total. This operation was
carried out separately for fragment pairs and jump pairs (including long jumps but not Fosmids),
yielding nine assemblies. (Fosmids were included in all assemblies at full coverage.) The N50 contig
size for these assemblies is shown. The same analysis for scaffolds is not shown because the N50
scaffold size is ∼10 Mb, and because the number of scaffolds in that size range is small, the N50 is
not statistically meaningful.

1. Lander ES, et al., International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 8 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=ST1
http://www.ncbi.nlm.nih.gov/sra
http://genome.ucsc.edu/cgi-bin/hgTables
http://genome.ucsc.edu/cgi-bin/hgTables
www.pnas.org/cgi/content/short/1017351108


Table S5. Genomic coverage (in percent) for mouse chr1 assemblies with reduced
coverage

Fraction of jump coverage used

50% 75% 100%

Fraction of fragment coverage used 50% 92.1 92.5 92.7
75% 92.8 93.2 93.4

100% 92.8 93.3 93.5

See Table S4 for comparison as Tables S4 and S5 are parallel.

Gnerre et al. www.pnas.org/cgi/content/short/1017351108 9 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017351108/-/DCSupplemental/pnas.201017351SI.pdf?targetid=nameddest=ST5
www.pnas.org/cgi/content/short/1017351108

