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Web Appendix A

EM Algorithm

For simplicity, we consider the common setting of time-independent covariates. In the E-step,

we calculate the conditional expectation of g(bi) given the observed data for some function g(·).

We denote such conditional expectation by Ê[g(bi)]. In view of the expression of the likelihood

function, Ê[g(bi)] is equal to
∫
b g(b)Γi(b)f(b; γ)db/

∫
b Γi(b)f(b; γ)db, where

Γi(b) = exp

{
bT (

∑

t

Ri(t)∆N
∗
i (t)Z̃i + ∆i(φ ◦ Z̃i))

}

× exp
{∫

logH ′(eα
TZi+bT Z̃iA(t))Ri(t)dN

∗
i (t) + ∆i logG′(eβ

TZi+bT (φ◦Z̃i)Λ(Yi))
}

× exp
{
−H(eα

TZi+b
T Z̃iA(Yi))−G(eβ

TZi+b
T (φ◦Z̃i)Λ(Yi))

}
.

The integrations in both the numerator and the denominator are evaluated through numerical

approximations, such as the Gaussian-quadrature approximation when bi is normal.

In the M-step, we maximize the following function

n∑

i=1

[∫
Ri(t)

{
logA{t}+ αTZi + Ê[bi]

T Z̃i + Ê[logH ′(eα
TZi+bTi Z̃iA(Yi))]

}
dN∗i (t)

−Ê[H(eα
TZi+b

T
i ZiA(Yi))]

]

+
n∑

i=1

[
∆i

{
log Λ{Yi}+ βTZi + Ê[bi]

T (φ ◦ Z̃i) + Ê[logG′(eβ
TZi+bTi (φ◦Z̃i)Λ(Yi))]

}

−Ê[G(eβ
TZi+b

T
i (φ◦Z̃i)Λ(Yi))]

]
+

n∑

i=1

Ê[log f(bi; γ)]. (A1)

Let t11 < t21 < t31 < . . . < tn1,1 be the ordered time points where recurrent events are

observed, and let a1, a2, a3, . . . , an1 be the jump sizes of A at those time points. Similarly, let
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t12 < t22 < t32 < . . . < tn2,2 be the ordered terminal event times, and let λ1, λ2, λ3, . . . , λn2 be

the jump sizes of Λ at those time points. By differentiating (A1) with respect to ak and setting

the derivative to be zero, we obtain

1

ak
+

n∑

i=1

Ê





∫
Ri(t)I(t ≥ tk1)

eα
TZi+b

T
i Z̃iH ′′(eα

TZi+b
T
i Z̃iA(t))

H ′(eα
TZi+bTi Z̃iA(t))

dN∗i (t)

−I(Yi ≥ tk1)eα
TZi+b

T
i Z̃iH ′(eα

TZi+b
T
i Z̃iA(Yi))

}
= 0,

where H ′′(x) = dH2(x)/dx2. Thus,

1

ak+1
=

1

ak
+

n∑

i=1





∫
Ri(t)I(tk1 ≤ t < tk+1,1)

eα
TZi+bTi Z̃iH ′′(eα

TZi+bTi Z̃iA(t))

H ′(eα
TZi+bTi Z̃iA(t))

dN∗i (t)

−I(tk1 ≤ Yi < tk+1,1)eα
TZi+bTi Z̃iH ′(eα

TZi+bTi Z̃iA(Yi))
}
. (A2)

Since A(t) = a1 +. . .+ak for t between tk1 and tk+1,1, equation (A2) provides a forward recursive

formula for calculating ak+1 from a1, . . . , ak. To obtain a backward recursive formula, we let

θ1 = A(tn1,1) and redefine fk1 = ak/θ1. Then
∑
k fk1 = 1, and the above equation becomes

1

fk1

=
1

fk+1,1

− 1

α1

n∑

i=1

Ê





∫
Ri(t)I(tk1 ≤ t < tk+1,1)

eα
TZi+b

T
i Z̃iH ′′(eα

TZi+b
T
i Z̃iA(t))

H ′(eα
TZi+bTi Z̃iA(t))

dN∗i (t)

−I(tk1 ≤ Yi < tk+1,1)eα
TZi+b

T
i Z̃iH ′(eα

TZi+b
T
i Z̃iA(Yi))

}
. (A3)

Since A(t) = θ1(1−∑n1
j=k+1 fj1) for t between tk1 and tk+1,1, we can calculate ak from ak+1, . . . , an1

and θ1. Likewise, we can obtain both forward and backward recursive formulae for estimating

λ1, λ2, . . .. Specifically,

1

λk+1
=

1

λk
+

n∑

i=1

I(tk2 ≤ Yi < tk+1,2)Ê



∆i

eβ
TZi+bTi (φ◦Z̃i)G′′(eβ

TZi+bTi (φ◦Z̃i)Λ(Yi))

G′(eβ
TZi+bTi (φ◦Z̃i)Λ(Yi))

−eβTZi+bTi (φ◦Z̃i)G′(eβ
TZi+bTi (φ◦Z̃i)Λ(Yi))

}
, (A4)

and

1

fk2
=

1

fk+1,2
− 1

α2

n∑

i=1

I(tk2 ≤ Yi < tk+1,2)Ê



∆i

eβ
TZi+bTi (φ◦Z̃i)G′′(eβ

TZi+bTi (φ◦Z̃i)Λ(Yi))

G′(eβ
TZi+bTi (φ◦Z̃i)Λ(Yi))

−eβTZi+bTi (φ◦Z̃i)G′(eβ
TZi+bTi (φ◦Z̃i)Λ(Yi))

}
(A5)
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where fk2 = λk/θ2, θ2 = Λ(tn2,2), and G′′(x) = d2G(x)/dx2.

Using the forward recursive formulae (A2) and (A4), the maximization of (A1) over α, β,

φ, γ and all the jump sizes of A and Λ becomes the maximization over α, β, φ, γ, a1 and λ1.

Likewise, using the backward recursive formulae (A3) and (A5), the maximization is over α, β,

φ, γ, θ1, θ2, fn1 and fn2 . In either way, we reduce the large number of parameters to only a small

number in the maximization of (A1). The Newton-Raphson algorithm can be used to update

the estimates in the M-step. We iterate between the E-step and the M-step until convergence

to obtain the NPMLEs. The EM algorithm also works for time-dependent covariates, although

the above recursive formulae are no longer applicable.

Web Appendix B

Asymptotic Properties

Let α0, β0, φ0, γ0, A0(t) and Λ0(t) denote the true parameter values. We wish to show that the

NPMLEs α̂, β̂, φ̂, γ̂, Â(·) and Λ̂(·) are consistent and

n1/2




α̂− α0

β̂ − β0

φ̂− φ0

γ̂ − γ0

Â(·)− A0(·)
Λ̂(·)− Λ0(·)




converges weakly to a zero-mean Gaussian process in Rd ×BV [0, τ ]×BV [0, τ ], where d is the

dimension of (αT , βT , φT , γT ), and BV [0, τ ] denotes the space of all functions with bounded

variations in [0, τ ]. We also wish to show that (α̂T , β̂T , φ̂T , γ̂T ) is asymptotically efficient and

that the inverse observed information matrix is a consistent estimator of the limiting covariance

matrix.

We impose the following conditions.

(D1) The parameter value (αT0 , β
T
0 , φ

T
0 , γ

T
0 )T belongs to the interior of a compact set Θ in Rd,

and A′0(t) > 0 and Λ′0(t) > 0 for all t ∈ [0, τ ].

(D2) With probability one, Zi(·) is left-continuous with uniformly bounded left- and right-
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derivatives in [0, τ ].

(D3) With probability one, P (Ci ≥ τ |Zi) > δ0 > 0 for some constant δ0.

(D4) With probability one, E[N ∗i (τ)] <∞.

(D5) The transformation functions H(·) and G(·) are four-times differentiable with H(0) =

G(0) = 0, H ′(0) > 0 and G′(0) > 0. In addition, there exist constants µ0 > 0 and κ0 > 0 such

that for any integer m ≥ 0 and any sequence 0 < x1 < . . . < xm ≤ y,

m∏

l=1

{(1 + xl)H
′(xl)} exp{−H(y)} ≤ µm0 (1 + y)−κ0

and

(1 + x)G′(x) exp{−G(x)} ≤ µ0(1 + x)−κ0.

There also exists a constant ρ0 such that

sup
x

{
|H ′′(x)|+ |H (3)(x)|+ |H (4)(x)|

H ′(x)(1 + x)ρ0

}
+ sup

x

{
|G′′(x)|+ |G(3)(x)|+ |G(4)(x)|

G′(x)(1 + x)ρ0

}
<∞,

where H (3), G(3), H(4) and G(4) denote the third and fourth derivatives.

(D6) For any constant c0 > 0,

sup
γ
E
[∫

b
exp{c0(N∗i (τ) + 1)|b|}f(b; γ)db

]
<∞,

and ∣∣∣∣∣
∂f(b; γ)/∂γ

f(b; γ)

∣∣∣∣∣+
∣∣∣∣∣
∂2f(b; γ)/∂γ2

f(b; γ)

∣∣∣∣∣+
∣∣∣∣∣
∂3f(b; γ)/∂γ3

f(b; γ)

∣∣∣∣∣ ≤ exp{c0(1 + |b|)},

(D7) If there exist c(t) and v such that c(t) + vTZ(t) = 0 with probability 1, then c(t) = 0 and

v = 0. In addition, there exists some t ∈ [0, τ ] such that {Z̃(t)} spans the whole space of b.

(D8) f(b; γ) = f(b; γ0) almost surely if and only if γ = γ0. In addition, if vTf ′(b; γ0) = 0 almost

surely, then v = 0.

It can be easily verified that condition (D5) holds for all commonly used transformations,

including the classes of Box-Cox and logarithmic transformations and that (D6) and (D8) hold

for normal and many other distributions. Condition (D7) entails the linear independence of

covariates, which is a natural requirement in regression analysis.
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The desired asymptotic properties will hold if we can verify that conditions (C1)-(C8) in

Appendix B of Zeng and Lin (2007) hold under our conditions (D1)-(D8). It follows from

the arguments in Appendix B of Zeng and Lin (2007) that our conditions (D1)-(D8) imply

(C1)-(C4), (C6) and (C8) of Zeng and Lin (2007). It remains to verify the two identifiability

conditions (C5) and (C7) of Zeng and Lin (2007).

We first verify (C5). Suppose that (α, β, φ, γ, A,Λ) yields the same likelihood as (α0, β0, φ0, γ0,

A0,Λ0). That is,

∫

b

[∏

t

{
a(t)eα

TZi(t)+b
T Z̃i(t)H ′(q1(t))

}Ri(t)∆N∗i (t)

e−H(q1(Yi))

]

×
[{
λ(Yi)e

βTZi(Yi)+b
T (φ◦Z̃i(Yi))G′(q2(Yi))

}∆i

e−G(q2(Yi))

]
f(b; γ)db

=
∫

b

[∏

t

{
a0(t)eα

T
0 Zi(t)+b

T Z̃i(t)H ′(q01(t))
}Ri(t)∆N∗i (t)

e−H(q01(Yi))

]

×
[{
λ0(Yi)e

βT0 Zi(Yi)+b
T (φ0◦Z̃i(Yi))G′(q02(Yi))

}∆i

e−G(q02(Yi))

]
f(b; γ0)db, (A6)

where q1(t) =
∫ t

0 e
αTZ(s)+bT Z̃(s)dA(s), q2(t) =

∫ t
0 e

βTZ(s)+bT (φ◦Z̃(s))dΛ(s), and q01 and q02 are q1

and q2 evaluated at the true parameter values. We take the following actions on both sides of

(A6):

(i) For the terminal event, we obtain an equation from (A6) by setting ∆ = 0 and Y = τ ; we

obtain a second equation by integrating t from t2 to τ on both sides under ∆ = 1 and Y = t.

We then take the difference between these two equations.

(ii) For the recurrent events, we let R(t) = 1 and let N ∗(t) have jumps at s1, s2, . . . , sm and

s′1, . . . , s
′
m′ for any arbitrary (m+m′) times in [0, τ ]. We integrate l1 of s1, . . . , sm from 0 to t11,

l2 of them from 0 to t12, . . ., lK of them from 0 to t1K , and integrate s′1, . . . , s
′
m′ from 0 to t2.

We then multiply both sides by
{∏

k(iω1k)
lk/
∏
k lk!

}
/m′! and sum over l1, . . . , lK, m

′ = 0, 1, . . ..

After these sequential operations, we obtain

∫

b
exp{

K∑

k=1

iωkH(q1(t1k))} exp{−G(q2(t2))}f(b; γ)db
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=
∫

b
exp{

K∑

k=1

iωkH(q01(t1k))} exp{−G(q02(t2))}f(b; γ0)db. (A7)

With t2 = 0, this equation implies that H(q1(t1k)) (k = 1, . . . , K) as a function of b1 ∼ f(b; γ)

and H(q01(t1k)) (k = 1, . . . , K) as a function of b2 ∼ f(b; γ0) have the same distribution, and

so is true for q1(t1k) (k = 1, . . . , K) and q01(t1k) (k = 1, . . . , K) because of the one-to-one

mapping. Thus, log q′1(t1k) (k = 1, . . . , K) and log q′01(t1k) (k = 1, . . . , K) must also have the

same distribution. Because E[b1] = E[b2] = 0, we obtain log a(t)+Z(t)Tα = log a0(t)+Z(t)Tα0.

It follows from (D7) that a(t) = a0(t) and α = α0. In addition, bT1 Z̃(t1k) (k = 1, . . . , K) and

bT2 Z̃(t1k) (k = 1, . . . , K) have the same distribution. Since Z̃(t) spans the space for b, b1 and

b2 must have the same distribution. It then follows from (D8) that γ = γ0. The foregoing

arguments also imply that b1 ∼ exp{−G(q2(t2))}f(b; γ) and b2 ∼ exp{−G(q02(t2))}f(b; γ0)

have the same distribution. Thus, exp{−G(q2(t2))}f(b; γ) = exp{−G(q02(t2))}f(b; γ0). That

is, logλ(t) +βTZ(t) + bT (φ ◦ Z̃(t)) = log λ0(t) +βT0 Z(t) + bT (φ0 ◦ Z̃(t)). Taking the expectation

with respect to b, we see that λ = λ0 and β = β0. Clearly, φ = φ0.

To verify (C7) of Zeng and Lin (2007), we write out the score equation along the path

(α0 + εv1, β0 + εv2, γ0 + εvγ , φ0 + εv3, A0 + ε
∫
h1dA0,Λ0 + ε

∫
h2dΛ0). We perform operations (i)

and (ii) on the score equation to obtain

∫

b

[
K∑

k=1

iωkA1(t1k, b)− A2(t2, b) +
f ′(b; γ0)Tvγ
f(b; γ0)

]
exp

{
K∑

k=1

iωkH(q01(t1k))−G(q02(t2))

}

×f(b; γ0)db = 0, (A8)

where A1(t, b) =
∫ t
0(h1(s) + vT1 Z(s) + bT (v1 ◦ Z̃(s)))q′01(s)dsH ′(q01(t))H(q01(t)), and A2(t, b) =

∫ t
0(h2(s) + vT2 Z(s) + bT (v2 ◦ Z̃(s)))q′02(s)dsG′(q02(t))G(q02(t)). Applying the Fourier transforma-

tion to both sides yields that for b ∼ f(b; γ0),

K∑

k=1

∂

∂gk
Eb
[
A1(t1k, b)

∣∣∣H(q01(t11)) = g1, . . . , H(q01(t1K)) = gK
]
f(g1, . . . , gK)

−Eb
[
A2(t2, b)

∣∣∣H(q01(t11)) = g1, . . . , H(q01(t1K)) = gK
]
f(g1, . . . , gK)

+Eb

[
f ′(b; γ0)Tvγ
f(b; γ0)

∣∣∣H(q01(t11)) = g1, . . . , H(q01(t1K)) = gK

]
f(g1, . . . , gK) = 0,

6



where f(g1, . . . , gK) is the joint density of H(q01(t11)), . . . , GK(q01(t1K)). We integrate out

g1, . . . , gK and set t2 = 0. Note that the last term is zero and the remainder is a homogeneous

equation for vT1 Z(t1k) +h1(t1k) (k = 1, . . . , K), which has a trivial solution. By condition (D7),

v1 = 0 and h1 = 0. Then (A8) becomes

∫

b

[
−A2(t2, b) +

f ′(b; γ0)Tvγ
f(b; γ0)

]
exp

{
K∑

k=1

iωkH(q01(t1k))−G(q02(t2))

}
f(b; γ0)db = 0.

By the arguments used in proving the identifiability, we obtain

−A2(t2, b) +
f ′(b; γ0)Tvγ
f(b; γ0)

= 0.

Clearly, f ′(b; γ0)Tvγ = 0, so it follows from condition (D8) that vγ = 0. Thus, vT2 Z(t2)+h2(t)+

bT (v3 ◦ Z̃(t)) = 0, implying that v2 = 0, h2 = 0 and v3 = 0.
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