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In this supporting material document, we first derive an expression for the material
velocity predicted in the plasmalemma from the recycling component of the model. This is
followed by a discussion of analytic solution attempts to the problem. A discussion of the results
obtained by applying perturbation methods to the problem is then presented. A discussion of the
estimated numerical value of the mass transfer coefficient, h_, is next, followed by a note on the
comparison of this 1-D model to a full 3-D recycling model.

This supporting material document also contains three figures (Figs. S1, S2, and S3) and
an addendum to Table 1. Fig. S1 explains the error that is accepted due to approximations made
in the model, and Fig. S2 shows the numerical results of the perturbation method. Fig. S3 shows
relevant geometry used to estimate h . The addendum to Table 1 describes how the numerical

values reported in Table 1 were obtained.

Derivation of Plasmalemma Velocity
We begin by writing an expression for the incremental volume of a given disc region,
labeled AV in Fig. 3:
AV = 71’ Ax¢ (S1)
where Ax s the incremental disc thickness as labeled in Fig. 3, ¢ is the non-void fraction, and
the radius of the cone, r, is given by:

r:rb+%(rt—rb) (S2)

In Eq. S2, r, is the radius at the cone tip, r, is the radius at the cone base, Lis the COS length

and x is the axial distance from the cone base. Next, the change in the incremental volume
AV with respect to time (which gives a volume flow rate) at any point x along the disc region
must be calculated. This is necessary because principles of mass conservation dictate that
material volume exiting the disc region must enter the plasmalemma region. Taking the time
derivative of Eq. S1, applying the chain rule, substituting previously defined values, and carrying
out the derivatives gives:
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The quantity % in Eq. S3 is recognized as the disc displacement velocity u, from Table

1. Making this substitution and dividing by the cross-sectional area of the material flow out of
the disc region and into the plasmalemma W Ax gives:

d(AV) 1 2zrAxg(r—r)dx _2zré(r, _rb)u
dt WAx  LWAx dt LW '
d(AV)
dt
plasmalemma at any given pointx. When scaled by the cross-sectional area of the flow out of

the disc region, W Ax, the result is the velocity out of the disc region, denoted as v. Equation S4
is the expression forv, and by substituting the definition of r from Eq. S2, the final result for v

Note that since r, >r,, ¢>0,u, >0, L>0,W >0, and0O<x<L, v will be negative

across the entire domain. The negative value of v physically represents the fact that bulk flow
of material is always flowing out of the disc region and into the plasmalemma during recycling

(5).

(S4)

The quantity is the volume flow rate out of the disc region and into the

Now that the material velocity exiting the disc region at any point x has been obtained in
Eqg. S5, we may proceed to derive an expression for the material velocity in the plasmalemma, u,

(recall that u,is the disc displacement velocity). Two assumptions are made at this point; the

first is that the flow in the plasmalemma is driven solely by the material exiting the disc region,
and the second is that the plasmalemma velocity at the tip of the COS is zero. The plasmalemma
flow velocity at any point x may be calculated by integrating the flow into the plasmalemma
region (which is the negative of the flow out of the disc region), and applying appropriate
boundary conditions. The equation which represents this is:

u,WT = —J‘ vWdx (S6)
In Eq. S6, WT is the cross-sectional area through which u, flows, while Wdx is the cross-

sectional area through which v flows. Substituting known values and carrying out the
integration gives:
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The arbitrary constant of integration C* in Eg. S7 may be determined by requiring that
u, =0atx=_L. This condition is physically motivated by the fact that material may only flow

out of the plasmalemma at the left side of the domain (base,x=0), so the right side of the
domain (tip) at x=Lis a wall through which no material may pass and therefore the material
velocity is zero at that point. Applying this physical restraint in Eq. S7 yields:

2

O:rbL+;'—L(rt—rb)+C“—>C“:—%(rt+rb) (S8)
Substituting the expression for C* from Eq. S8 into Eq. S7 yields:
U, (T —r, x?
u2:—#{Zrbx+T(rt—rb)—L(rt+rb)} (S9)

The value of u, in Eg. S9 is negative across the entire domain except for the point

x = Lwhere it is zero due to the boundary condition previously mentioned. With this continuum
expression for the plasmalemma material velocity, a simplified mass transfer model for the label
density may be derived.

Analytic Solution Attempts

Ideally, we would like to have an analytic solution to the system of Eqgs. 13. Analytic
solutions have numerous advantages, the most notable being gain of physical insight into the
problem and ease of calculating results. In our attempt to find an analytic solution to this
problem, we first used numeric solution methods to gain some preliminary insight. The most
important insight gained numerically was that the solution to the approximate Egs. 15 was
indistinguishable from the full system Eqgs. 13 for earlier times. So, if an analytic solution to the
approximate system Eqgs. 15 may be found, it will be of as much value as a solution to the full
system Eqs. 13 for early times. From inspection of the two equation systems, it seems that if an
analytic solution does indeed exist, it will be much easier to determine for the approximate
system than for the full system since there are less terms to deal with. Also, it is of note that if an
analytic solution cannot be found for the approximate system Eqgs. 15, then it is unlikely that it
will be found for the full system Eqs. 13, so it seems natural to attempt a solution to the
approximate system first.

There is one analytic solution that is immediately apparent, and that is the steady-state
solution. By setting all time derivatives to zero in Egs. 15, then adding the two equations, we get
the ODE

d*p;
— =0 S10
dx™? (510)



which is subject to the same boundary conditions as before. Solving Eg. S10 and using the result
to solve for the disc region yields the steady-state solution

P _1>ast—>oo (S11)
P =¢

The following solution methods to obtain an analytic result were attempted, none of
which were successful: direct substitution, approximating the cone geometry as a rectangle to
yield a constant-coefficient equation, similarity solution (S1), reduction of order/state-space,
computer algebra system, and regular perturbation theory (28). However, regular perturbation

theory did yield one useful insight. For this problem, the parameter ¢ =

m

is small compared to the others, so a power series solution was assumed such that

th sz Xt
(S12)
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When the perturbation method was applled to system Eqgs. 15, the resulting partial
differential equation obtained (with initial and boundary conditions) was

¢ ) 8,0(0) a2p(0)
il |-

0 1t
Py (0,1)=1, % 0, o (x,0)=0 (S13)
X
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which is a non-constant coefficient, uncoupled partial differential equation. No analytic solution
was found for Eqgs. S13, although a numeric study (see Fig. S2) showed that they did yield results
of acceptable accuracy for times greater than 15 min of physical time. The advantage gained by
using Eqgs. S13 is that if one is only interested in later times, numeric solutions for an uncoupled
problem such as that in Egs. S13 are much easier to program than solutions for the full, coupled
system of Egs. 13 or Egs. 15.

Perturbation Solution Results

Fig. S2 shows a comparison of the numerical solution of the full system Eqgs. 13 with the
numerical solution of the system obtained by perturbation methods Eqs. S13 for different times.
Recall that the system Eqs. S13 was obtained by only considering the leading term in the power
series Eqgs. S12. For the same reasons mentioned previously, the first parameter set
corresponding to the onset of the light cycle was used for this perturbation method study. As
seen in Fig. S2A-B, the perturbation solution is very poor for early time regimes. This is not
surprising due to the fact that during Stage 1 of the mass transfer process, diffusion in the
plasmalemma is the principal factor and in Stage 2 the mass transfer coefficient is the principal
factor, but the first term in the power series does not contain the diffusion constant or mass
transfer coefficient as a parameter. This is due to the definition of the perturbation parameter
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only appears in the second and higher terms of the power series Egs. S12. Fig. S2C-E show that
the perturbation approximation improves as time increases, but tends to under-predict the density
profile; depending on the accuracy required, these solutions may be acceptable. Fig. S2F shows
that the perturbation solution slightly worsens as time increases, but the difference in accuracy
between the perturbation solution at 2 h and the solution without advection (Fig. 7F) at 2 h is
negligible. It is also of note that the perturbation method predicts the correct steady-state
solution. Finally, very large gains in computational speed are gained by using the perturbation
solution, due to the fact that the system is uncoupled and also produces a diagonal matrix, which
allows for the exploitation of computationally efficient algorithms.

which contains the effects of the diffusion constant and mass transfer coefficient and

E =

Estimation of Mass Transfer Coefficient, h_

We derive an approximation for hy, by considering the species flux into and out of the
plasmalemmal control area (PL,; area = W * d) associated with disc 2, as illustrated in Fig. S3.
We select this level for analysis in order to avoid the need to deal with the half-disc (single
membrane) attached to the basal-most disc (disc 1) along its open margin segment and also
connected to the connecting cilium.

The flux of label into control area PL is F,, arriving via diffusion from the lower control area
PL;. Net diffusion of label into control area PL, can follow two available paths: direct axial
diffusion to the adjacent control area PL, , and axio-lateral diffusion (Fg) into disc 2 via the two
saddle points (SP). The relative amounts of label transported to these two sites will be related to
the aperture for entry into those sites. For axial diffusion, the aperture is the width of the
plasmalemma (W = 2.1 um). For lateral diffusion into disc 2, the aperture for diffusion is twice
the aperture for each saddle point. The axial length (diameter) of the saddle point region is less
than d, and is estimated to be 0.5 * d from electron microscopic data (e.g., see Fig. 1). Thus, for
two saddle points, the aperture is d (dashed lines in PL,).

Given the value of the diffusion constant D = 0.5 um?/s (Table 1), the root-mean-square
displacement of labeled opsins is 0.3 pm/s (24). This value provides a close approximation for
the labeled species flux in the axial direction. The axial diffusion front from x = 0 will reach x =
datt;=~0.115s (d=0.3 um/s * t), and x = 2d at t, = ~ 2*t;. At t;, the concentration of labeled
species in PL; and disc 2 will be zero. During the time interval (t, - t;), some label arriving from
control area PL; will have also diffused laterally through each saddle point to the same distance
d, if the height of this diffusion strip is maintained at d/2. The number of labeled opsins
transported into this axial segment of the COS [x = d to x = 2d] will be n,, and these will be
distributed over an area A; equal to the control area PL, [W * d = 0.0727 um?] plus the area
populated via the two saddle points [2 * (0.5 * d) * d = d* = 0.0012 pm?], or A; = 0.0739 um?.
The number of labeled opsins in PL, will be np 2 =ny * (W * d) / A, = 0.9838 * n,, and the
number entering disc 2 will be ng; = n, * d?/ A, = 0.0162 * n,. Thus, given the initial label
density gradient between control area PL; and disc 2 (label density = 0), the relative flux of
labeled opsins into disc 2 is small (0.0162) compared to that transferred to PL,. This small
fractional transfer is governed primarily by the dimensions and geometry of the control area, and



by the difference in label concentration. The coefficient derived (0.0162 um/s) provides one
estimate of h,.

A second estimate for lateral diffusion into disc 2 from PL takes into account the curved shape
of each saddle point, as illustrated in PL3. Approximating this local curvature as a semicircle of
diameter d/2, the entry aperture for disc 2 will be (/2)*(d/2). Thus, the total length of the
diffusion interface for PL, will be W + 2*(n/2)*(d/2) = W + = * (d/2). The estimate of h, using
these values is 0.02523 um/s. Given potential errors in estimates for W, d the saddle point

height and actual SP curvature, a reasonable approximation, based upon saddle point geometry
and topology is the larger value: hy, =0.025 um/s.

A Note on Recycling

The detection of label in newly formed basal discs is confronted with an additional
hurdle that emerges when comparing the 1-D model with the full 3-D recycling model. The 1-D
model applies a constant concentration of label across the base of the COS, i.e., to both the disc
core region and to the plasmalemmal region. Thus, the curves in Fig. 5 provide upper estimates
for the label density in the disc region. But in the 1-D model, only three components of
advection are operative: apical displacement of discs, flow of disc membrane components to the
plasmalemma as the discs become smaller, and advective flow of the older disc components in
the plasmalemma towards the base of the COS (Fig. 3, block arrows). Not included is a fourth
component of advective flow that directs recycled opsins and lipids accumulating around the
basal plasmalemma to the newly forming disc. During the early stages of system evolution, most
of these recycled opsins are unlabeled, and the recycling model predicts that they will mix in the
basal plasmalemma region with new labeled opsins (arriving via the connecting cilium). This
diluted mixture is what would primarily characterize a reduced labeling density of new discs. In
contrast, we know from comparing label density distributions with and without advection (Fig.
6) that during the first 30 min of system evolution, advection has no discernible effect on label
density distribution in either the plasmalemma or disc core region, and even thereafter, the effect
is small. Basal advection of the plasmalemma is just much slower than the apical diffusion of
opsin. Thus, we expect that the labeled opsin density distribution along the plasmalemma will be
established basically as calculated. In this view, the recycling model predicts that the new basal
disc will develop a density of label that is significantly less than that available near the
connecting cilium for axial diffusion along the plasmalemma. However, axial diffusion along
the plasmalemma is rapid and quickly transfers label to discs in the basal region. The rate of
accumulation of new basal discs is very slow and their label density will quickly become dictated
by the label density distribution established along the plasmalemma.
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FIGURE S1 Error analysis for COS model during system evolution. In this advection-diffusion
model, the length of the COS (L) and its tip radius (r,) remain constant during the calculation of

density distributions, whereas the COS increases in length at velocity u, and the tip radius

continuously decreases. Thus, as the system evolves over time, there is progressive divergence
of in vivo parameter values from model parameters. For the three starting time points in the light
cycle evaluated (Table 1), the errors in these parameters are evaluated as the starting value
divided by the value at later time points. The evolution of frustum volume (V) is also evaluated.
In general, the model underestimates length and volume over time, and overestimates tip radius.
However, at the 2-h time points, two model parameters represent in each case a high percentage
of calculated in vivo values: V = 95%, 98.1% and 99.3%; L = 88.8%, 91.6% and 92.8%. While
the tip radius diverges increasingly at longer COS starting lengths, its effect on estimating COS
volume is quite small due to the converging geometry of the COS tip. This analysis indicates
that system evolution of the model is robust, involving 100-95% of the COS volume during the
2-h evolution periods, and that model accuracy is greater at longer COS starting lengths.
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FIGURE S2 Comparison of solution with advection versus perturbation solution for (a) 6 s (b) 1
min (c) 15 min, (d) 30 min, (e) 1 h, and (f) 2 h of system evolution. Parameters used in the
solution represent the onset of the light cycle (L, , r, in Table 1). Perturbation methods result
in a significant decrease in solution time. The perturbation solution is inaccurate for early times
and is of greatest accuracy for times of 15 min — 1 h; the solution at the latest time of 2 h may be
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FIGURE S3 Plasmalemma control areas. The label density present at the base of the COS (x =
0) is the reference value po. Att = t;, label density within PL; is ppr1, and label density within
PL; and disc 2 and is also zero. The height of each control area is d = 0.0346 um, the axial disc
repeat period and its width is the arc length of the plasmalemma W = 2.1 um (Table 1). In PL,,
the diffusion aperture through the saddle point (SP) into disc 2 is shown as a dashed vertical line.
In PL3, the curvature of the saddle point in this plane is approximated as a semicircle (dashed
line).

EXPLANATORY NOTES FOR TABLE 1:

[1] The lateral diffusion of visual pigments (rhodopsin, porphyropsin) have been studied in a
number of animal species and isolated disc preparations (24, 25, S2 — S6). Values of D vary
between 3.0 — 5.5 x 10-9 cm?/s. The value selected is representative of amphibian
photoreceptors.

[2] Based on data for the African clawed frog (Xenopus laevis) reported by Eckmiller (16, 17).
The average basal diameter is 4.2 um and does not change significantly between the time of
light onset and light offset, i.e., during the period of COS elongation.

[3] For Xenopus maintained on 12 h light : 12 h dark cycles, Eckmiller (16, 17) reported that the
mean COS length at light onset was 3.8 um and increased to 6.7 um over the next 12 h. Atan

axial density of 45 discs (lamellae) per micron in fixed and embedded tissue, the COS increased
in length from an average of n = 171 discs to n = 301 discs over the 12 h light interval, or an
increase of An = 130 lamellae over 720 minutes. This increase in length is basically monotonic.
In order to approximate the lengths and changes in length in vivo compared to measurements
from fixed and embedded specimens, we need an estimate of the axial spacing, d, of COS discs
in vivo. While not a directly available parameter, we have estimated d for COSs by scaling
Nilsson’s ROS disc spacing data (2) to that obtained by x-ray (S7) and neutron diffraction data of
fresh tissue, and applying that scale factor to his axial spacing data for COSs. We estimate that
for amphibian COSs, d = 34.6 nm, which is close to the estimate from freeze-etch data (5, Fig. 7:
35.0 nm). Thus, over the 12 h light period, Xenopus COSs increase in length from 5.92 um
(=171*d) to 10.42 um (=301*d). We equate this axial growth rate with the axial rate at which
discs are added and advanced apically in the COS: one disc is added every 5.54 min. From
Eckmiller’s image data, we also estimated that the conical generator angle in vivo is o = 9.5°.



The radius (r,) of the COS tip at different COS lengths (L) was estimated from the formula:
tana =(r,—r,)/L,whereL=n-d.

The average increase in Xenopus COS length (2.9 um) during the 12-hour light period
observed by Eckmiller (16, 17) agrees closely with the estimated length increase in lizard COSs
(~2.7 um) reported by Bernstein et al. (S8). Both values are significantly higher than early
estimates inferred from analyses of the sizes of disk packets shed from COS tips and
phagocytized by the retinal pigment epithelium (15, S9), where the frequency of shedding events
was uncertain.

[4] The non-void membrane fraction of each axial repeat interval is represented by the two
membranes of each disc. The thickness of each membrane, i.e., the thickness of the layer in
which lateral diffusion occurs, is set equal to 7.5 nm, the length of the bovine rhodopsin
molecule (S10) measured perpendicular to disc membrane and centered on the lipid bilayer (~4.0
nm thick). The non-void dimension of the two disc membranes is 2 * 7.5 nm = 15.0 nm. We
base the non-void fraction of each disc repeat period on an average value for the disc spacing
d=34.6 nm: ¢ = 15.0/34.6 = 0.43. The in vivo variation in COS disc spacings is not established,
but analyses of x-ray diffraction data from ROSs (S7) suggests a possible range: for an average
axial disk spacing of 29.5 nm, the lattice nearest neighbor spacing has a variation of £1.9 nm
(6.44%). Because the axial disc repeat distance in COSs appears larger than in ROSs, we expect
larger variation. The plasmalemma thickness (T) is set equal to the thickness of a disc membrane
(7.5 nm) based on EM images.

[5] Plasmalemma width is estimated from the arc length of the closed margin of COS discs (5),
which is ~ 2.1 um and approximately constant along the COS.
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