Supplement

Figure S1

3% agarose gel presents: Lane1- 210bp dsDNA fragment,

Lane 2- 210bp dsDNA fragment (fast migrating band) and ligated with 96mer product (slow migrated band), marked with the arrow,

Lane 3- ds DNA marker (New England Biolab)

The distribution of contour lengths for DNA for samples prepared in the presence of 5mM Mg²⁺. (A) The lengths of the double stranded regions of free DNA; 81.2 ± 3.9 nm. (B) The lengths of double stranded DNA in the complex with A3G; the DNA length was measured from a free end to the middle of the blob on another end; 79.3 ± 5.6 nm. (C) The lengths of the DNA in the complex with A3G-H248 mutant protein measured similar as above; 79.9 ± 4.1 nm.

Figure S3

AFM image of A3G wild type protein and DNA complexes formed in the presence of 25μ M Zn²⁺, image size 600nm.

Mutant

Figure S4

AFM images of A3G-H248 mutant protein and DNA complexes formed in the presence of $25\mu M Zn^{2+}$, image size 600nm.

Figure S5. A3G and the mutant protein, A3G H248A/H250A, have similar localization and ultracentrifugation gradient profiles. (A) Localization of A3G and A3G H248A/H250A tagged with GFP. Nuclei are indicated in blue by Hoescht staining and proteins are fused with a GFP tag, displayed in green. (B) GFP-tagged proteins were expressed in Hela cells, loaded and spun on 10-40% glycerol gradients, fractionated and analyzed by western blot for GFP. Relatively low molecular mass complexes (LMM) fractionate closer to the 10% glycerol concentration while high molecular mass complexes (HMM) migrate farther into the gradient.

Table S1. Independent t-test for A3G volume with $Mg^{2+}(A)$ and A3G volume without divalent cations (B):

Data	Mean	Variance	Number of events
A B	159.41974 139.24257	7572.81128 3855.79613	106 106
$\overline{\mathbf{t} = -1.9}$ $\mathbf{p} = 0.0$	9432)5333		

At the 0.05 level, the two means are NOT significantly different.

Table S2. Independent t-test for A3G- volume with $Zn^{2+}(C)$ and A3G volume with $Mg^{2+}(D)$:

Data	Mean	Variance	Number of events
C D	163.46501 169.9122	9412.40136 9694.5733	72 72 72

t = 0.39577

p = 0.69287

At the 0.05 level, the two means are NOT significantly different

