
Web-based Supplemental Materials for “Bayesian models for

multiple outcomes nested in domains” by Sally W. Thurston, David

Ruppert, and Philip W. Davidson

A Derivation of notation for model (3)

We first derive the notation for model (3) using a variant of model (2) that is close to the

model we use for the Seychelles data. We will then explain how the specific model we use

for our application can also be expressed as in (2). The model we consider is

y∗i, j = (βx + bD, d(j), x + bO, j, x) xi + βββT
S Si + ri + rD, d(j), i + εi j (A-1)

= ( xi ST
i

)( βx βββT
S

)T + xi bD,d(j),x + xi bO,j,x + ri + rD,d(j),i + εi j

Here we include separate terms for the fixed effects, domain-specific exposure effects, outcome-

specific exposure effects, overall subject effects, and domain-specific subject effects, a pattern

which we follow in extending this model to all outcomes and all subjects together. In order

to be able to write model (A-1) for all outcomes and all subjects together, we need some

additional notation. Let 1J be the J by 1 vector of 1’s, and IJ×J be the J × J identity

matrix. Also let Idom be the J ×D indicator matrix in which the (j, d)th element is 1 if the

jth outcome is in the dth domain, and 0 otherwise.

We use Fi to denote exposure and covariates that correspond to the fixed effects for subject i.

Let

y∗i = ( y∗i,1 · · · y∗i,J )T , Fi = ( xi ST
i

), ZD,i,j = xi, ZO,i,j = xi,

rD,i = ( rD,i,1 · · · rD,i,D )T , εi = ( εi,1 · · · εi,J )T , F(⊗),i = ( xi ST
i

)⊗ 1J ,

βββ = ( βx βββT
S

)T , bD = ( bD,1,x · · · bD,D,x )T , bO = ( bO,1,x · · · bO,J,x )T .
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We need some further definitions in order to write model (2) for all observations together.

Let

Y∗ =


y∗1
...

y∗n

 , X =


x1

...

xn

 , F =


x1 ST

1

...
...

xn ST
n

 , r =


r1

...

rn

 , rD =


rD,1

...

rD,n

 ,

and ε = ( εT
1 · · · εT

n
)T . Also let

F(⊗) = F⊗ 1J , ZD = X⊗ Idom, ZO = X⊗ IJ×J , R = r⊗ 1J , RD = (Idom ⊗ In×n) rD.(A-2)

Note that Y∗,F(⊗),ZD,ZO,R,RD and ε all have n × J rows. With this added notation,

model (A-1) can be expresses as shown in model (3).

In our model for the Seychelles data we included fixed domain-specific covariate effects for

all covariates (but random effects for exposure, as before). In this case F(⊗),i in (A-2) was

replaced by F(⊗),i = ( xi ⊗ 1J Si ⊗ Idom ), and βββ was expanded accordingly. However we

also allowed the effect of sex on trailmaking A and B to differ from its effect on outcomes

within the motor domain. We did this by introducing an indicator matrix, Isex which is

similar to Idom, but with an additional column that allows the sex effect for trailmaking

A and B to differ from the other outcomes in the motor domain. We then replaced the

domain-specific sex effect, xsex,i ⊗ Idom, within F(⊗),i by xsex,i ⊗ Isex.

It will be useful to re-express the model assumptions for the random effects, given in sec-

tion 2.3. We can write these as bD ∼ N(0,Db,D), bO ∼ N(0,Db,O), r ∼ N(0,Dr), rD ∼

N(0,Dr,D), ε ∼ N(0,Dε), where Db,D = ΣΣΣb,D⊗ID×D, Db,O = ΣΣΣb,O⊗IJ×J , Dr = σ2
rIn×n, Dr,D =

In×n ⊗ ΣΣΣr,D, and Dε = In×n ⊗ ΣΣΣε.
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B Conditional posteriors for the multiple domains case

In this appendix we list the conditional posterior of all model parameters. Some derivations

of these conditional posteriors are given in the next Web Appendix.

Here we use “rest” to denote all other model parameters and the data. The conditional

posterior for βββ is normal with posterior mean and covariance matrix

E(βββ | Y, rest) = (FT
(⊗)D

−1
ε F(⊗) + ΣΣΣ−1

0 )−1FT
(⊗)D

−1
ε (Y∗ − ZDbD − ZObO −RD −R)

Var(βββ | Y, rest) = (FT
(⊗)D

−1
ε F(⊗) + ΣΣΣ−1

0 )−1

=
{
(FTF)⊗ (1T

J ΣΣΣ−1
ε 1J) + ΣΣΣ−1

0

}−1
= {

J∑
j=1

(1/σ2
ε,j)× FTF + ΣΣΣ−1

0 }−1

The conditional posterior for the overall subject-specific random effects r, is derived in the

next Web Appendix and is

r | Y, rest ∼ N
(
vr(In×n ⊗ 1T

J ΣΣΣ−1
ε )(Y∗ − F(⊗)βββ − ZDbD − ZObO −RD), vrIn×n

)
, (A-3)

where vr = (1T
J ΣΣΣ−1

ε 1J + 1/σ2
r)
−1 = {

∑
j

(1/σ2
ε,j) + 1/σ2

r}−1 (A-4)

This can be re-expressed as

ri | Y, rest ∼ N

{∑J
j=1(y

∗
i,j − Fiβββ − ZD,i,jbD, d(j), x − ZO,i,jbO, j, x − rD,i)/σ

2
ε,j∑J

j=1(1/σ
2
ε,j) + 1/σ2

r

, vr

}
, (A-5)

The conditional posterior for the dth subject-specific random effect at the domain level, rD,d,i

is

rD,d,i | Y, rest ∼ N


∑D

j∈d(j)(y
∗
i,j − Fiβββ − ZD,i,jbD, d(j), x − ZO,i,jbO, j, x − ri)/σ

2
ε,j∑J

j=1(1/σ
2
ε,j) + 1/σ2

r,D,d

, vD,d

 ,
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where vD,d = (1T
J ΣΣΣ−1

ε 1J + 1/σ2
r,D,d)

−1 = {∑j(1/σ
2
ε,j) + 1/σ2

r,D,d}−1 The conditional posterior

for the outcome-specific random effects, bO, is normal with posterior mean and variance

E(bO | Y, rest) = (ZT
OD−1

ε ZO + D−1
b,O)−1ZT

OD−1
ε (Y∗ − F(⊗)βββ − ZDbD −R−RD)

Var(bO | Y, rest) = (ZT
OD−1

ε ZO + D−1
b,O)−1

=
{
(X⊗ In×n)T (In×n ⊗ ΣΣΣ−1

ε )(X⊗ In×n) + (ΣΣΣb,O ⊗ IJ×J)
}

(A-6)

=
{
(XTX⊗ ΣΣΣ−1

ε ) + (ΣΣΣ−1
b,O ⊗ IJ×J)

}
(A-7)

In (A-6), the replacement of ZO by X ⊗ IJ×J , as given in (A-2) assumes that there are no

random outcome-specific covariate effects. If the model includes random outcome-specific

covariate effects for all covariates, then X in (A-6) and (A-7) would be replaced by F.

The conditional posterior for the domain-specific random effects, bD, is normal with posterior

mean and variance

E(bD | Y, rest) = (ZT
DD−1

ε ZD + D−1
b,D)−1ZT

DD−1
ε (Y∗ − F(⊗)βββ − ZObO −R−RD)

Var(bD | Y, rest) = (ZT
DD−1

ε ZD + D−1
b,D)−1

where the variance can be re-expressed in a similar manner to the variance of bO.

The posteriors for the variance components are given below. We derive the conditional

posterior for the elements of ΣΣΣε and ΣΣΣb,D in the next Web Appendix.

σ2
d,D, x | Y, rest ∼ IG(D/2 + A0,b,D,

D∑
d=1

b2
D, d, x/2 + B0,b,D)

σ2
d,O, x | Y, rest ∼ IG(J/2 + A0,b,O,

J∑
j=1

b2
O, j, x/2 + B0,b,O)

σ2
ε,j | Y, rest ∼ IG{n/2 + A0,ε,

n∑
i=1

(y∗i,j − Fiβββ − ZD,i,jbD, d(j), x − ZO,i,jbO, j, x − ri − rD,d(j),i)
2/2 + B0,ε}
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σ2
r | Y, rest ∼ IG(n/2 + A0,r,

n∑
i=1

r2
i /2 + B0,r)

σ2
r,D,d | Y, rest ∼ IG(n/2 + A0,r,D,

n∑
i=1

r2
D,d,i/2 + B0,r,D).

C Derivation of conditional posteriors

The joint posterior of all model parameters is p(βββ,ZD,ZO, r, rD, ΣΣΣε, ΣΣΣb,D, ΣΣΣb,O, σ2
r , ΣΣΣr,D |

Y) ∝ p(Dε)p(Db,D)p(Db,O)p(Dr)p(Dr,D)exp{T/2} where

T ∝ (Y∗ − F(⊗)βββ − ZDbD − ZObO −R−RD)TD−1
ε (Y∗ − F(⊗)βββ − ZDbD − ZObO −R−RD)

+bT
DD−1

b,DbD + bT
OD−1

b,ObO + rTD−1
r r + rT

DD−1
r,DrD + βββT ΣΣΣ0βββ

Obtain the conditional posterior for r

Let Ar = (Y∗−F(⊗)βββ−ZDbD−ZObO−RD). The conditional posterior for r is proportional

to exp(−Tr/2), where Tr = (R−Ar)
TD−1

ε (R−Ar) + rTD−1
r r. Re-write R as

R = r⊗ 1J =


r11J

· · ·

rn1J

 =



1J 0 0 0

0 1J 0 0

...
...

...
...

0 0 0 1J


r = (In×n ⊗ 1J)r

Then Tr becomes

Tr = [(In×n ⊗ 1J)r−Ar]
TD−1

ε [(In×n ⊗ 1J)r−Ar] + rTD−1
r r

= [rT (In×n ⊗ 1T
J )−AT

r ](In×n ⊗ ΣΣΣ−1
ε )[(In×n ⊗ 1J)r−Ar] + rTD−1

r r

∝ rT [(In×n ⊗ 1T
J )(In×n ⊗ ΣΣΣ−1

ε )(In×n ⊗ 1J) + D−1
r ]r
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−2rT (In×n ⊗ 1J)(In×n ⊗ ΣΣΣ−1
ε )Ar

∝ rT [(In×n ⊗ 1T
J ΣΣΣ−1

ε 1J) + D−1
r ]r− 2r(In×n ⊗ 1T

J ΣΣΣ−1
ε )Ar

= rT [In×n ⊗ (1T
J ΣΣΣ−1

ε 1J + 1/σ2
r)]r− 2r(In×n ⊗ 1T

J ΣΣΣ−1
ε )Ar

= rT (v−1
r In×n)r− 2r(In×n ⊗ 1T

J ΣΣΣ−1
ε )Ar

where as given in (A-4), vr = (1T
J ΣΣΣ−1

ε 1J + 1/σ2
r)
−1 = {∑j(1/σ

2
ε,j) + 1/σ2

r}−1 so as given in

(A-3)

r | Y,b, βββ ∼ N{vr(In×n ⊗ 1T
J ΣΣΣ−1

ε )(Y∗ − F(⊗)βββ − ZDbD − ZObO −RD), vrIn×n}

We can re-write this in scalar format. Let Ar,i be the j-dimensional column vector corre-

sponding to the ith subject: Ar,i = y∗i − F(⊗),iβββ − ZD,ibD − ZO,ibO −RD,i, where

ZD,i = ZD,i,jIdom, ZO,i = ZO,i,jIJ×J , Ri = ri1J , RD,i = Idom rD,i.

Also let pT
ε = 1T

J ΣΣΣ−1
ε = ( 1/σ2

ε,1 . . . 1/σ2
ε,J

), so In×n ⊗ 1T
J ΣΣΣ−1

ε = blockdiag{pε}, where

blockdiag{pε} =



pT
ε 0 · · · 0

0 pT
ε · · · 0

...
...

...
...

0 0 · · · pT
ε


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Then it follows that the posterior mean of r can be re-expressed as

vr(In×n ⊗ 1T
J ΣΣΣ−1

ε )Ar = vr blockdiag{pε}Ar =



vrp
T
ε Ar,1

vrp
T
ε Ar,2

...

vrp
T
ε Ar,n



Substituting in for pε and Ar, we can see that the ith element is

vr( 1/σ2
ε,1 · · · 1/σ2

ε,J
)(y∗i − F(⊗),iβββ − ZD,ibD − ZO,ibO −RD,i)

=
J∑

j=1

vr

σ2
ε,j

(y∗i,j − Fiβββ − ZD,i,jbD, d(j), x − ZO,i,jbO, j, x − rD,d(j),i)

from which the posterior of r as given in (A-5), follows.

Obtain the conditional posterior for ΣΣΣε

Using properties of determinants (Harville, 1997), we can rewrite the determinant of Dε as

|Dε| = |In×n ⊗ ΣΣΣε| = |In×n|J |ΣΣΣε|n =

∏
j

σ2
ε,j

n

It follows that |Dε|−1/2 =
(∏

j σ2
ε,j

)−n/2
. For a given j, the only part of |Dε|−1/2 that involves

σ2
ε,j is (σ2

ε,j)
−n/2. Therefore the contribution to the likelihood from a particular σ2

ε,j is just

(σ2
ε,j)

−n/2exp{−(1/2)
n∑

i=1

(y∗i,j − Fiβββ − ZD,i,jbD, d(j), x − ZO,i,jbO, j, x − ri − rD,i)
2/σ2

ε,j}

Combining this with the prior, σ2
ε,j ∼ IG(A0,ε, B0,ε), the posterior follows.

Obtain the conditional posterior for ΣΣΣb,D

We can re-write |Db,D| as |Db,D| = |ΣΣΣb,D ⊗ ID×D| = |ΣΣΣb,D|D = (σ2
d,D,x

∏K
k=1 σ2

d,D,Sk
)D The
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contribution to the posterior from the likelihood involves the exponentiation of the term

−(1/2)bT
DD−1

b,DbD. Since ΣΣΣb,D is diagonal,

bT
DD−1

b,DbD =
1

σ2
b,D,x

D∑
d=1

bD,d,x +
1

σ2
b,D,S1

D∑
d=1

bD,d,S1 + · · ·+ 1

σ2
b,D,Sp

D∑
d=1

bD,d,Sp

Since we have also assumed inverse gamma priors for each component of ΣΣΣb,D we can consider

each element separately. Consider the posterior for σ2
d,D,x, and using what we have derived

above,

p(σ2
d,D,x | Y, rest) ∝ (σ2

d,D,x)
−(D/2+A0,b,D)exp

(
−
∑D

d=1 bD,x/2 + B0,b,D

σ2
d,D,x

)

from which the conditional posterior follows. The posteriors for the other elements of ΣΣΣD

factor in a similar manner.

D Drawing missing outcome values

Let θ denote all model parameters, superscript (t) denote the sampled value at iteration

t, and subscripts of mis and obs denote missing data and observed data respectively. At

the (t + 1)st iteration of the MCMC we alternate between the imputation step (I-step) in

which we draw y
∗(t+1)
mis ∼ P (y∗mis | y∗obs, θ

(t)), and the posterior step (P-step) in which we

draw θ(t+1) ∼ P (θ | y∗obs, y
∗(t+1)
mis )[24]. The P-step is the iterative step for drawing from the

posterior distribution for the model parameters given complete data, as already discussed.

Given all model parameters, the y∗i,j are all independent. Thus the I-step involves draws

from

y
∗(t+1)
mis,i,j | y∗obs, rest ∼ N

(
Fiβββ

(t) + ZD,i,jb
(t)
D,d(j),x + ZO,i,jb

(t)
O,j,x + r

(t)
i + r

(t)
D,d(j),i, σ

2(t)
ε,j

)
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If we did not recenter draws of y∗(t+1) and were to fit our model with intercepts, the intercepts

would not be exactly zero. This is because centering took place on the observed data yobs and

not on the complete data (yobs, y
∗
mis). To avoid a possible bias in other model parameters for

our no-intercept model, we took an additional step to ensure that the intercepts are exactly

zero. Specifically, after each draw of y∗mis we rescaled this draw to the original outcome scale

using the mean and SD from the observed data on the jth outcome, then re-centered and

rescaled the entire vector of (y
(t)
mis, yobs).

E Details of prior choice and model checking

The IG(1, 1) prior for variance components is a more typical choice for a non-informative

prior than our priors. Although a shape hyperparameter of 1 is not overly informative in

some applications, here only D = 4 values contribute to estimation of σ2
d,D,x, motivating

our adoption of a smaller shape parameter. Likewise, a scale hyperparameter of 1 may be

uninformative when the relevant posterior sum of squares is large. However in our application

the posterior sum of squares for nearly all variance components were substantially smaller

than 1, motivating our choice of a much smaller shape parameter. For “prior A” we visually

compared the scale hyperparameter for each variance component to the draws of the relevant

posterior sums of squares. Our prior hyperparameters were smaller than nearly all draws of

the posterior sums of squares, indicating that our hyperparameter choices were not overly

influential.

The MCMC for each prior (“A”, “B”, and “C”) was run with 10 different sets of starting

values for the variance components. Six chains started from variance components of either

all 100, all 10−7 or a mixture of 100 and 10−7. Three chains used starting values that

were sampled from uniform distributions on [0, 1], and one chain used reasonable values as

determined from previous MCMC samples. Starting values for all fixed and random effects
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were always set to zero, which affects only the initial imputation step for missing outcomes.

Starting values for missing data are not needed because our algorithm first draws missing

data (which initially depend on starting values for model parameters), and these draws are

then used in sampling model parameters.

The MCMC for each of the 10 chains was run for 6000 iterations for prior “A” and “B”, and

for 11, 000 iterations for “prior C”. Based on model diagnostics we used a burn-in of 1000

for priors “A” and “B”, and a burn-in of 6000 for “prior C”, thereby keeping 50, 000 draws

(5000 from each chain) for every prior. Final posterior estimates were based on 10, 000 draws

in which we took every 5th draw.

As discussed in Section 2.4, in addition to a visual examination of the traceplots our diagnos-

tics included the Gelman-Rubin diagnostic R̂ for the multiple chains [11], mcgibbsit, and the

Raftery-Lewis diagnostic [18]. Mcgibbsit [28] in R is a generalization of the Raftery-Lewis

diagnostic [18] for multiple chains. We used mcgibbsit to determine the number of draws

needed to estimate the q = 0.025th quantile of each model parameter within r = ±0.0125 of

the model parameter quantile, with s = 95% probability. For single chains, we calculated the

Raftery-Lewis diagnostic [18] using the same values of q, r, and s as we used for mcgibbsit.

Using “prior A”, trace plots for σ2
r showed that in 3 chains the draws were essentially zero for

several hundred iterations, before these chains found the more likely mode already reached

by the remaining chains, at about 0.17. Draws of most elements of ΣΣΣε from these 3 chains

were substantially larger than the other chains for several hundred iterations, before these

3 chains found the other mode with smaller values of ΣΣΣε already reached by the remaining

chains. Trace plots for “prior B” and “prior C” showed the same patterns, but with the

switches occurring after several thousand iterations for “prior C”. In all cases the earlier

modes were never revisited.

Under “prior A”, the 97.5th percentile for the Gelman-Rubin R̂ was 1.00 for nearly all
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parameters, 1.01 for a few others, 1.02 for one, and was 1.12 for σ2
d,D,x. Mcgibbsit indicated

that all model parameters could be estimated within the desired level of precision in fewer

than 6000 draws. Using the final sample with every 5th draw from all 10 chains, the Raftery-

Lewis diagnostic for “prior A” indicated that 1400 draws were sufficient to reach the desired

level of precision for all model parameters. Although 1400 draws would be sufficient, we

report results from 10, 000 draws (every 5th draw from all 10 chains) for increased precision.

The model diagnostic results for “prior B” and “prior C” were similar to, but not quite as

good, as those from “prior A”. The 97.5th percentile of the Gelman-Rubin R̂ for σ2
d,D,x was

1.39 for “prior B” and 1.08 for “prior C”. The Raftery-Lewis diagnostic on the final chain

indicated that all parameters could be estimated with the desired level of precision within

3000 draws for prior “B” and 13, 000 draws for prior “C”. Under “prior C”, only σ2
d,O,x could

not be estimated with the desired level of precision within 5000 draws.

In order to see whether our model was consistent with the observed data, at every 50 it-

erations of the final 10, 000 draws we took a sample of outcomes (size: 533 × 20) from the

posterior predictive distribution, p(yrep | y), conditional on the observed values of MeHg

and covariates. We then compared the distribution of the following summary statistics from

the posterior predictive distribution to the corresponding value in the SCDS data: marginal

means and variances of the outcomes, maximum and minimum correlations between an out-

come and all other outcomes, regression coefficients and their corresponding p-values for

MeHg and each covariate from separate regressions for each relevant outcome, and ratio of

the residual variance from the separate regression to the marginal variance of the outcome.

Because of the large number of outcomes, we only examined these statistics from the first

outcome in each domain.

In nearly all respects the draws from the posterior predictive distribution were similar to

their corresponding observed value in the SCDS data. P-values for some covariates were
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occasionally very different from the observed value, but these occasional differences were

not consistent across outcomes or covariates. However the maximum correlations between

outcome pairs from the posterior predictive distributions were consistently smaller, and the

minimum correlations between outcome pairs consistently larger than was observed in the

SCDS data. This suggests that our treatment of outcomes within a domain as exchangeable

is an oversimplification of the true situation, as discussed briefly in Section 3.2.

F Proof that ZTZ is singular when combining ZO and ZD

In this appendix we prove that when we use a single Z matrix for both outcome-specific

and domain-specific effects, the ZTZ matrix is singular. The implication of this is that the

outcome-specific and domain-specific effects must be considered separately. We prove this

for the situation in which we allow outcome-specific and deviation-specific covariates effects

for the same set of covariates. In our implementation, F = X, i.e. we did not have random

effects for covariates. In the general case

Z = ( ZD ZO ) = ( F⊗ Idom F⊗ IJ×J )

where, as defined on page i, Idom is the J ×D matrix in which the (j, d)th element is 1 if the

jth outcome is in the dth domain, and 0 otherwise.

First, Z = F⊗(Idom IJ×J) by (1.12) in Chapter 16 of Harville (1997). Next, rank(Idom IJ×J)

= J since (Idom IJ×J) has J rows. Then, by (1.26) in Chapter 16 of Harville (1997), rank(Z)

= rank(F)rank(Idom IJ×J), which is less than the number of columns in Z. Therefore, the

columns of Z are linearly dependent, so there is a non-zero vector ααα such that Zααα = 0.

Therefore, ZTZααα = 0 so that ZTZ is singular.
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Model results Separate regressions
true mean .025 .975 MSE mean .025 .975 MSE

βx −0.0500 −0.0471 −0.0953 0.0045 0.0010
bD,1 −0.0300 −0.0130 −0.0624 0.0183 0.0009
bD,2 0.0300 0.0134 −0.0209 0.0560 0.0008
bD,3 −0.0150 −0.0072 −0.0498 0.0252 0.0005
bD,4 0.0150 0.0052 −0.0333 0.0465 0.0006

slope 1 −0.0800 −0.0623 −0.1164 −0.0104 0.0015 −0.0749 −0.1499 0.0001 0.0029
slope 2 −0.0800 −0.0634 −0.1166 −0.0122 0.0014 −0.0790 −0.1492 −0.0088 0.0024
slope 3 −0.0800 −0.0624 −0.1164 −0.0099 0.0014 −0.0776 −0.1562 0.0009 0.0028
slope 4 −0.0200 −0.0304 −0.0819 0.0231 0.0013 −0.0085 −0.0905 0.0736 0.0036
slope 5 −0.0200 −0.0320 −0.0833 0.0202 0.0013 −0.0204 −0.0985 0.0578 0.0030
slope 6 −0.0200 −0.0317 −0.0829 0.0208 0.0013 −0.0185 −0.0961 0.0591 0.0031
slope 7 −0.0200 −0.0331 −0.0842 0.0188 0.0013 −0.0267 −0.1038 0.0504 0.0026
slope 8 −0.0200 −0.0327 −0.0844 0.0202 0.0013 −0.0224 −0.1084 0.0637 0.0034
slope 9 −0.0200 −0.0325 −0.0843 0.0206 0.0014 −0.0201 −0.1070 0.0668 0.0035
slope 10 −0.0650 −0.0547 −0.1054 −0.0043 0.0011 −0.0575 −0.1384 0.0235 0.0033
slope 11 −0.0650 −0.0543 −0.1051 −0.0034 0.0011 −0.0572 −0.1399 0.0256 0.0037
slope 12 −0.0650 −0.0547 −0.1058 −0.0039 0.0011 −0.0597 −0.1440 0.0247 0.0034
slope 13 −0.0650 −0.0540 −0.1045 −0.0035 0.0011 −0.0548 −0.1365 0.0269 0.0033
slope 14 −0.0650 −0.0561 −0.1077 −0.0056 0.0011 −0.0649 −0.1470 0.0171 0.0039
slope 15 −0.0650 −0.0559 −0.1069 −0.0061 0.0011 −0.0658 −0.1443 0.0127 0.0035
slope 16 −0.0650 −0.0540 −0.1053 −0.0026 0.0012 −0.0560 −0.1434 0.0313 0.0043
slope 17 −0.0650 −0.0562 −0.1077 −0.0061 0.0010 −0.0696 −0.1546 0.0154 0.0036
slope 18 −0.0350 −0.0415 −0.0956 0.0135 0.0014 −0.0381 −0.1247 0.0484 0.0044
slope 19 −0.0350 −0.0407 −0.0944 0.0145 0.0013 −0.0322 −0.1179 0.0536 0.0035
slope 20 −0.0350 −0.0405 −0.0943 0.0148 0.0013 −0.0273 −0.1148 0.0603 0.0036

Table Web-1: Simulation results from a model with relatively large domain-specific devia-
tions, and outcome-specific deviations of zero. Rows labeled “slope 1” to “slope 20” refer to
the estimated exposure effects on outcomes 1 to 20. Column headings under “Model results”
and “Separate regressions” give the mean, 0.025 and 0.975 posterior quantiles, and mean
squared error (MSE).
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Model results Separate regressions
true mean .025 .975 MSE mean .025 .975 MSE

βx −0.0500 −0.0482 −0.0918 −0.0051 0.0008
bD,1 −0.0100 −0.0028 −0.0334 0.0233 0.0003
bD,2 0.0100 0.0031 −0.0222 0.0321 0.0003
bD,3 −0.0100 −0.0032 −0.0320 0.0216 0.0003
bD,4 0.0100 0.0029 −0.0241 0.0341 0.0003

slope 1 −0.0700 −0.0533 −0.1044 −0.0040 0.0013 −0.0649 −0.1399 0.0101 0.0029
slope 2 −0.0550 −0.0514 −0.1013 −0.0024 0.0010 −0.0540 −0.1242 0.0162 0.0024
slope 3 −0.0550 −0.0509 −0.1014 −0.0011 0.0010 −0.0526 −0.1312 0.0259 0.0028
slope 4 −0.0450 −0.0437 −0.0928 0.0062 0.0010 −0.0335 −0.1155 0.0486 0.0036
slope 5 −0.0450 −0.0452 −0.0941 0.0037 0.0010 −0.0454 −0.1235 0.0328 0.0030
slope 6 −0.0450 −0.0451 −0.0945 0.0042 0.0011 −0.0435 −0.1211 0.0341 0.0031
slope 7 −0.0350 −0.0447 −0.0935 0.0043 0.0011 −0.0417 −0.1188 0.0354 0.0026
slope 8 −0.0350 −0.0443 −0.0938 0.0057 0.0011 −0.0374 −0.1234 0.0487 0.0034
slope 9 −0.0350 −0.0441 −0.0933 0.0058 0.0011 −0.0351 −0.1220 0.0518 0.0035
slope 10 −0.0650 −0.0522 −0.1020 −0.0036 0.0011 −0.0575 −0.1384 0.0235 0.0033
slope 11 −0.0650 −0.0519 −0.1013 −0.0031 0.0011 −0.0572 −0.1399 0.0256 0.0037
slope 12 −0.0650 −0.0521 −0.1015 −0.0033 0.0011 −0.0597 −0.1440 0.0247 0.0034
slope 13 −0.0650 −0.0516 −0.1010 −0.0031 0.0011 −0.0548 −0.1365 0.0269 0.0033
slope 14 −0.0550 −0.0522 −0.1018 −0.0033 0.0010 −0.0549 −0.1370 0.0271 0.0039
slope 15 −0.0550 −0.0517 −0.1009 −0.0032 0.0010 −0.0558 −0.1343 0.0227 0.0035
slope 16 −0.0550 −0.0504 −0.0998 −0.0006 0.0010 −0.0460 −0.1334 0.0413 0.0043
slope 17 −0.0550 −0.0524 −0.1024 −0.0035 0.0009 −0.0596 −0.1446 0.0254 0.0036
slope 18 −0.0500 −0.0463 −0.0986 0.0056 0.0012 −0.0531 −0.1397 0.0334 0.0044
slope 19 −0.0350 −0.0438 −0.0949 0.0085 0.0012 −0.0322 −0.1179 0.0536 0.0035
slope 20 −0.0350 −0.0437 −0.0950 0.0089 0.0012 −0.0273 −0.1148 0.0603 0.0036

Table Web-2: Simulation results from a model with small domain-specific deviations, and
small outcome-specific deviations. Rows labeled “slope 1” to “slope 20” refer to the estimated
exposure effects on outcomes 1 to 20. Column headings under “Model results” and “Separate
regressions” give the mean, 0.025 and 0.975 posterior quantiles, and mean squared error
(MSE).
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