The American Journal of Human Genetics, Volume 86

Supplemental Information

Dominant-Negative Mutations in α -II Spectrin Cause

West Syndrome with Severe Cerebral Hypomyelination,

Spastic Quadriplegia, and Developmental Delay

Hirotomo Saitsu, Jun Tohyama, Tatsuro Kumada, Kiyoshi Egawa, Keisuke Hamada, Ippei Okada, Takeshi Mizuguchi, Hitoshi Osaka, Rie Miyata, Tomonori Furukawa, Kazuhiro Haginoya, Hideki Hoshino, Tomohide Goto, Yasuo Hachiya, Takanori Yamagata, Shinji Saitoh, Toshiro Nagai, Kiyomi Nishiyama, Akira Nishimura, Noriko Miyake, Masayuki Komada, Kenji Hayashi, Syu-ichi Hirai, Kazuhiro Ogata, Mitsuhiro Kato, Atsuo Fukuda, and Naomichi Matsumoto

Outline

1. Supplemental Figures	2
2. Supplemental Tables	3

Figure S1. Genomic rearrangements at 9q33.3-q34.11 in subject 1. (A) Deletion junctions were narrowed-down by GeneChip Human Mapping 250K NspI analysis (Affymetrix), which was performed and analysed as previously described.¹ The proximal and distal junctions should map between chr 9:128,205,955 and 128,245,900 (40 kb interval) [UCSC genome browser coordinate (version Mar. 2006)], and between 130,402,182 and 130,493,941 (91.7 kb interval), respectively. Long PCR was performed in a 15 μ l volume, containing 100 ng genomic DNA, 1× PCR Buffer for KOD FX, 0.4 mM each dNTP, 0.3 μ M each primer, and 0.3 U KOD FX polymerase (Toyobo, Osaka, Japan). Position and sequences of primers used for cloning of the proximal break point was indicated (upper). An unexpected 204-kb inversion and intact genomic regions are shown in green arrow and sky blue, respectively. The forward primer is shown by a blue

arrow. The reverse primer was initially designed to anneal to the position of the red solid arrow, but it accidentally annealed to the position of the red dashed arrow. Close-up view of the proximal breakpoint is also shown (lower). Two aligned nucleotide sequences show primer (upper) and chromosome 9 (lower) sequences with asterisks indicating identical nucleotides between them. Genomic positions of chromosome 9 are according to the UCSC genome browser coordinates (version Mar. 2006). In the reverse primer (red dashed arrow) originally designed without any supposition of the inversion, 13-bp sequence of the 3' side was accidentally matched to the 3.6 kb distal region from the proximal breakpoint in an inverted direction (red box), allowing PCR-amplification. The distal deletion junction fragment (also including another breakpoint of the inversion) was amplified using primers, Forward: 5'-TGAGGTCATCCTGCAAAGTGCGTAT-3' and Reverse: 5'-GAGCCAGGAGTTGGCTGACCTTATC-3' (11.9 kb amplicon). (B) PCR with two primers shown in (A) successfully amplified a 5.6 kb fragment using genomic DNA of subject 1 as a template. Sub1, subject 1; Cont, control DNA, Neg, negative control (no template DNA). (C) Breakpoint-specific PCR analysis of the family of subject 1. Primers specific to proximal (Forward: 5'-

AACCCTCACCTGTGACCCAGTCATT-3', Reverse, 5'-

TGTTTGAGTTGCTGATTCACAGTTTGCT-3', upper panel) and distal (Forward, 5'-GGCCAGAGAAGTTTCTGAGCACCTG-3', Reverse, 5'-

GAGCCAGGAGTTGGCTGACCTTATC-3', lower panel) breakpoints could successfully amplify 381- and 842-bp products, respectively, only from Subject 1 (Sub 1), indicating the genomic rearrangements occurred *de novo*. M, size marker; Fa, father; Mo, mother; Neg, negative control. (D) FISH images of two BAC clones on subject 1's chromosomes are depicted. While RP11-307l3 on the short arm of chromosome 9 (green) showed two signals as a marker of chromosome 9, RP11-589e16 which spans the entire *SPTAN1* gene (red) showed only one signal, indicating heterozygous deletion of *SPTAN1* in subject 1 (white arrow). (F) Relative mRNA levels of *SPTAN1* in lymphoblastoid cells (LCLs) were determined by quantitative real-time RT-PCR using TaqMan Gene expression assays (Hs00162203_m1 for *SPTAN1* and Hs00357333_g1 for β-actin as a control). Levels are shown for four controls and subject 1. Average of duplicated experiments is displayed as a gray bar with an error bar of the standard deviation. LCLs derived from subject 1 showed almost half the level of expression of *SPTAN1* mRNA compared with that of four normal control LCLs.

^{1.} Saitsu, H., Kurosawa, K., Kawara, H., Eguchi, M., Mizuguchi, T., Harada, N., Kaname, T., Kano, H., Miyake, N., Toda, T., et al. (2009). Characterization of the complex 7q21.3 rearrangement in a patient with bilateral split-foot malformation and hearing loss. Am J Med Genet A *149A*, 1224-1230.

Figure S2. Transient expression experiments of tagged α -II spectrin. Protein expression was evaluated at seven days of maturation in vitro (DIV) (A-F) and nine DIV (G). Double immunostaining of endogenous α -II/ β -II spectrins (A), α -II/ β -III spectrins

(B) in primary cultured cortical neurons. Expressions of α -II, β -II, and β -III spectrins overlapped at the cell body and neurite. (C and D) Two mutant EGFP- α -II spectrins (EGFP-del mut and EGFP-dup mut) showed aggregation, predominantly in cell bodies and axons (arrows), and these aggregations were co-localized with β -II and β -III spectrins (middle and lower panels), while wild-type EGFP- α -II spectrin (EGFP-wt) did not show any such aggregation (upper panel). Aggregations were also detected with anti- α -II spectrin antibody (E), suggesting that endogenous α -II spectrin was indeed involved in aggregation as an α/β spectrin heterotetramer. (F) Cells showing aggregation were counted using nuclear EGFP as a transfection marker, expressed from the Flag-nucEGFP vector. While aggregations were never seen when wt α -II spectrin was expressed, del mut and dup mut showed aggregation in approximately 87 % and 95 % of transfected cells, respectively (based on three independent experiments, n = 100 neurons in each experiment). The percentage of aggregation detection did not change between utilization of anti-Flag and anti-a-II spectrin antibody. Non-repeated measures using ANOVA followed by a Bonferroni post-test indicated that del mut and dup mut exhibited significant differences in number of cells having aggregation compared with wild-type, respectively (P<0.01). (G) Immunostaining against β -IV spectrin did not show its involvement in the mutant aggregation, in contrast to β -II and β -III spectrins. The following primary antibodies were used: mouse anti- α -II spectrin (1:400 dilution; clone D8B7; Abcam, Tokyo, Japan), mouse anti-β-II spectrin (1:600 dilution; clone 42/B-spectrin II; BD Transduction laboratories, San Jose, CA), rabbit anti-β-II spectrin (1:100 dilution; Abcam), rabbit anti- β -III spectrin (1:400 dilution; Abcam), mouse anti-Flag M2 (1:1000 dilution; Sigma, Tokyo, Japan), chick anti-B-IV spectrin (1: 400 dilution),¹ rabbit anti-GFP (1:2000 dilution; MBL, Nagoya, Japan), and chicken anti-GFP (1:2000 dilution; Aves labs, Tigard, OR).

1. Komada, M., and Soriano, P. (2002). βIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol *156*, 337-348.

Subject Age Sex	SPTAN1 aberrations	Initial symptoms	Onset of spasms	Initial EEG	Response to therapy	Development	Neurological examination	Brain MRI	OFC (cm)	Others
l 6 y Female	a 2.25-Mb deletion (including SPTAN1 and STXBP1)	Tonic seizure Oral automatism	1.5 m	S-B	Seizure free after TRH injection (5 m)	Visual attention Oral feeding No head control	Profound MR Hypotonic quadriplegia	Slightly decreased WM (at 4 y)	31 (-1.6 SD, at birth) 41.3 (-3.9 SD, at 23 m)	
2 7 y Female	c.6619_6621del (p.E2207del)	No visual attention	3 m	Hyps	Intractable	No visual attention Gastrostomy No head control	Profound MR Spastic quadriplegia	Cortical atrophy Decreased WM Cerebellum & BS atrophy Thin CC (at 6 y)	31.5 (-1.2 SD, at birth) 44.4 (-2.4 SD, at 35 m)	GE reflux
3 Died at 3 y Male	c.6923_6928dup (p.R2308_M2309 dup)	No visual attention	3 m	Hyps	Intractable	No visual attention Tube feeding No head control	Profound MR Spastic quadriplegia	Cortical atrophy Decreased WM Cerebellum & BS atrophy Thin CC (at 3 y)	33 (-0.4 SD, at birth) 42.4 (-4.8 SD, at 36 m)	GE reflux Myo- carditis

Table S1. Summary of clinical features in individuals with SPTAN1 aberrations

y, year(s); m, month(s); EEG, electroencephalogram; S-B, suppression-burst; Hyps, hypsarrhythmia; TRH, thyrotropin-releasing hormone; MR, mental retardation; MRI, magnetic resonance imaging; WM, white matter; BS, brain stem; CC, corpus callosum; OFC, occipitofrontal circumference; SD, standard deviation; GE, gastroesophageal.

	size (bp)	orientation	primer sequence (5'-3')	Annealing (°C)	Extension (°C)
E 2	220	Forward	CATCTATTTTGGTGCCTATTGGT	57	68
Ex2 338	338	Reverse	TTTGGGCTCTTGAATTTTGG	56	
E2	221	Forward	ATGCTGATGCTGTGTGGTTG	50	(9
EX3	231	Reverse	TACAATGCTCCACCCAGATG	56	08
E 4	240	Forward	CCCACAGAGCCAGTTGTGAT	50	(9
EX4	249	Reverse	GGAGTCTCTTCCCTTTTCTTTGA		08
E5	249	Forward	TGTTTCTGGAAGCCATTGTT	56	69
EXJ	248	Reverse	TGTTGTGAGAAGCATACAGCA		08
Evé	222	Forward	GTTGGAGGAGCCAGAAGTTG	56	69
EXO	255	Reverse	CTCCAGGTTGAGACCCATTC	50	08
E7	244	Forward	AGGGAGTCATCATTGCTGTG	56	69
EX/	244	Reverse	TTCTCCTGACCCTTGGTAACTT		08
E ₂₂ 9	260	Forward	AAGTTACCAAGGGTCAGGAGAA	56	68
EX8	269	Reverse	TCTGCTATTCCTGCTTCCAAA	50	
E ₂ 0	250	Forward	AACCTCCGCTGGAAACATAA	56	68
EX9	EX9 250	Reverse	CCCAACACTGATAAACTGGTG	50	
E-10	E 10 250	Forward	TGTAAGATGCTGGGCACAAA	5((9
Ex10 250	Reverse	GGTGAATGCGTTCTCTGGAT	50	08	
E-11	220	Forward	ATTGGGGCTGACCTCATCT	(0)	72
EXII	239	Reverse	CAAAACACAGGCCCTTCTTC	00	
Ev.12	225	Forward	ACCCTTTGCTTCACAGTCTTAG	56	68
EXIZ	255	Reverse	TCTGGCTTACTATAAGGGTCATTTG		
Ev.12	222	Forward	CAAGCTTGGGACTAGTGTGCT	56	68
EXIS	222	Reverse	GGGATATCCAGTTGAAGAGACTT	56	
Ev:14	275	Forward	TGGATATCCCTTTGGGAGTG		60
EX14	273	Reverse	TTTGTGAGAGCTGTGTTTAGCTT		08
E-15	217	Forward	GGGAACTTGACGTTCTCAGG	5(68
EXIS	51/	Reverse	AAGGGGTATTTAGTTCCCCAAA	30	
En16	202	Forward	ACTGTTCATGGGCAGTGTTG	57	<i>(</i>)
Ex16	292	Reverse	GCATTCACTTGCCCAACC	30	08

Table S2. PCR conditions and primer sequences

Ex17 244	244	Forward	CGATAAAACCACACCCAAAG	57	68
EX17	344	Reverse	TAGCACAGCCTTTCCCAAGT		08
Ex18 245	Forward	CTGGAACCATGGTGGTAGC	56	69	
	243	Reverse	CACCAAGCCATGTCACTGAT	30	08
Ev.10	200	Forward	AGTGCCGTGAACACACAGAG	56	69
EX19	398	Reverse	CGCGCATCACTACTTCTCCT		08
E20	226	Forward	GGAGGATGGGAGGCTTCAG	56	69
EX20	220	Reverse	TGATAGGAACACCTGCTGACA	30	08
Ev.21	202	Forward	TGGCATTTGAATCTGCTCTG	56	69
EX21	293	Reverse	CAACCCACAGAAACCCAACT	- 30	08
E22	276	Forward	TCCTTGGATTCTCCCTCTCA	56	69
EX22	270	Reverse	GGCCCATGTGGAACAGAGTA	- 30	08
E22	249	Forward	CCAACATTAAGCATCCACCA	57	68
EX23	248	Reverse	CTTCAAGAGAAGCGGCAGAG	- 30	
$E_{\rm W}24$	204	Forward	GCTAACTGCCTTCCTTGTCC	56	(9
EX24	294	Reverse	TCAAATCTTTAAACAAATTTTCAGC	- 30	08
E25	250	Forward	TCCTTTGACTTTGGCTTGCT	56	68
EX23	230	Reverse	CACTGCTTGTTGGGCTATGA		
Ev26	220	Forward	TCCTGTGTTTCCAGGTTTGG	56	68
EX20	230	Reverse	AAGGCATCTGAGGTTCAGGA		
$E_{\rm W} 27$	F 27 1(7	Forward	GGTGCTTTGTTTCATGGTCA	56	68
EX27	Reverse		GGCACACCAGAAAAGGACAT		08
E29	220	Forward	CAATGACACTTGCAGCTCAGA	56	(9
EX20	220	Reverse	ACCCGGTTGACAAGAACAAG		08
Ev20	240	Forward	ATGCCCTAGCATCTCCTTCA	60	72
EX29	248	Reverse	GGAAACCAGCAGTCACCTGT	00	12
E20	250	Forward	TAATCAAGGCAGTTGTACTTGG	56	69
EX30	230	Reverse	CTCTTTCTGGGGCAAAAATG		08
$E_{\rm W} 21$	280	Forward	TGCAGAGCATACCCCCTTAC	56	69
EXJI	289	Reverse	GACCCCTACAAAGAAGGCTCT	50	00
Ev20	247	Forward	TGTTTTCCTGGGCAGAAGAT	56	68
EXJZ	24/	Reverse	ACAAAGGGTGGGAATGAGG	30	
Ev22	200	Forward	GGCATCTGCTGCCAGTTAC	- 56	68
Ex33	288	Reverse	CCCTTCAGCAAGGAAACACT		

E-24 245	245	Forward	CTTGCTGAAGGGCCTCATT	57	68
EX34	245	Reverse	GATGTCAATCAGGAAAAATCCA	- 50	08
Ex35 285	295	Forward	CCTGCCACCAGCTAGTTCTC	60	72
	285	Reverse	GCCTTCGTATGAGGGGATG	60	
	227	Forward	GTCTCCCCACTTCCTTCTCC	56	69
EX30	327	Reverse	TGGGTGCAAGGAGATTGTTT	- 30	08
E27	242	Forward	GTTCCCAAATGCTGAGCTTC	50	(9
EX37	243	Reverse	TGAAGAGACACCAGCAAACC		08
E29	249	Forward	CCTTCCCCCTGAAAAGACAT		(9
EX38	248	Reverse	GTGACGGTGGTCATCTTCCT	- 50	08
E20	250	Forward	GAGAGGGACGATTCTTCATAGA	50	(9
EX39	230	Reverse	TGTGCCAAATGACTAGAAATCC		08
Ev.40	247	Forward	CCACTGGGCAACCTGAATTT	56	69
EX40	247	Reverse	CCTTAGGAGTCAGGCAGAGC	- 30	68
$E_{\rm w} 41$	249	Forward	GCAGATAGCTGTGGGAGACC	60	72
EX41	540	Reverse	GCCTCACCACTCAACAGTCA	00	
Ev. 12	249	Forward	CCACAGTTGACCTGATGTCC	60	72
EX42	240	Reverse	GGCCCACTCAAACACCTCT		
Ev/2	236	Forward	CTGGGAGCTTCGAGACAGAA	- 60	72
EX43	230	Reverse	CTGGCCTTCCACTTGTTCC	00	
Ev.44	E 44 240	Forward	TCACAATCAAAGCTGGAGGA	56	68
E744	240		AGGCAGTTGCCAAGAGAGAA	50	08
Ev. 45	220	Forward	AATAGTGTGCCTTGGCTGCT	56	60
EX43	220	Reverse	TCCCAGGAAGTGAACTTTGG	50	08
Ev.46	205	Forward	CTTTCCAGGGAGGGCATAGT	56	69
EX40	293	Reverse	ACGGAAGGAGACAAAGAGCA	50	08
$E_{\rm W} 47$	100	Forward	CCTTTCTAATCCATCTCCACTGA	56	60
EX47	199	Reverse	GCCACCAGTCATCTCACAGA	50	08
Ev 19	200	Forward	TCCAGTCCTGTGGAGTCACC	60	72
LA40	233	Reverse	GAGCTGTGGGCCAGCTAAG	00	12
Ev/0	121	Forward	CACCCCACCTCCTGCACT	60	72
EA49	434	Reverse	CTGAGCAGGGCCCAGAGA	00	12
Ev 50	247	Forward	TGAGCCCATCTGTGAAGGA	- 60	72
Ex50	247	Reverse	CCCAGGGCTTAAGTACAGCA		

Ex51 115	115	Forward	GTCCGGACACCACCTTGT	56	68
	115	Reverse	ACGAGACCCCCACATGAC	50	
	227	Forward	CCAGGCATTGCTCTCTCTG	60	72
EX32	221	Reverse	TTTAAGCCAGGAAGGGAAGG	00	
Ev52	220	Forward	CTCCTGGGCTGGTGACTG	60	72
EX35	550	Reverse	CACAGCAGGTGACTGTGTCTT	00	
Ex54 2	213	Forward	TGCTGTGTGGAGGGTCTGT	56	68
		Reverse	CCTGCCAGACTTGTCCTTGT		
Ex55 300	200	Forward	GCCCTCAAAGAATTCAGCAT	60	72
	500	Reverse	GGCAGAGGCTCACAGCAC	00	12
Ex56 283	202	Forward	AATTAAGGCCAGGTGCTGTG	56	68
	283	Reverse	TTGGCTTTAGTTTTCCAAAGGA		
Ev 57	260	Forward	GAGGTCGGGTTTGAAGTGG	60	72
EX3/		Reverse	CACACAGAGGAGCGGACAT	00	12

Cycling conditions

95°C 1 min

	wt -Flag	del mut -Flag	dup mut -Flag	p value
Resting membrane potential (mV)	-61.8 ± 0.7 (7)	-59.7± 1.0 (9)	-58.5 ± 2.1 (7)	0.48
Input resistance (MΩ)	547.7 ± 104.9 (7)	497.2 ± 84 (9)	568.7 ± 79 (7)	0.83
Whole cell capacitance (pF)	$33.6 \pm 3.2 (7)^{a}$	$28.0 \pm 5.8 (9)^{a}$	$29.1 \pm 4.0 (7)^{a}$	0.70
	$41.2 \pm 5.0 (11)^{\rm b}$	$52.3 \pm 4.5 (10)^{b}$	$39.2 \pm 7.0 (10)^{\mathrm{b}}$	0.26
Action potential threshold (mV)	-37.9 ± 0.7 (7)	-21.9 ± 1.4 (9)	-23.9 ± 1.8 (7)	<0.0001 ^c
Peak sodium current density in activation protocol (pA/pF)	79.0 ± 16.2 (11)	32.7 ± 5.0 (10)	40.2 ± 8.3 (10)	0.016 ^d
10-90% Rise time of the sodium current (ms)	1.07 ± 0.08 (11)	1.12 ± 0.12 (10)	1.02 ± 0.11 (10)	0.79

Table S3. Electrophysiological parameters recorded from cultured cortical neurons expressing either wt or mutant α-II spectrin

All data are given as mean \pm SEM (number of cells). p value was calculated by one-way ANOVA.

^a whole cell capacitance evaluated in the current clamp recording.

^b whole cell capacitance evaluated in the voltage clamp recording.,

^c Results of post-hoc analysis: wt vs. del mut, p < 0.001; wt vs. dup mut, p < 0.001.

^d Results of post-hoc analysis: wt vs. del mut, p < 0.05; wt vs. dup mut, p < 0.05.