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 Appendix A. The Appendix contains: 1) details on the Fourier and wavelet methods; 2) additional details 

on the method of simulation; 3) more extensive simulation studies to evaluate issues of sampling 

interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of 

the particular movement trajectory used; 4) additional analyses and results of the lion and buffalo 

data; 5) a table summarizing the parameters used in the implementation of the frequency and 

time-frequency methods for each data set. 

 

A1. Fourier and wavelet methods 

 Fourier analysis is a ubiquitous tool throughout science, inter alia allowing estimation of the 

strength of frequencies ω making up the spectral density

! 

f "( ) of a stationary stochastic process. 

Computational strategy takes 

! 

"
k

= k /N , for k = 0,…,N-1 as a set of suitable frequencies from 

which to estimate

! 

f "( ). The discrete Fourier transform of the time series 

! 

X
N  at frequency 

! 

"
k
 is 

defined as 

! 

ˆ I "k( ) =
1

N
X je

#2i$kj / N

j= 0

N#1

% , (Eq. A1) 
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and provides a means to estimate the spectral density with the raw periodogram, or sample power 

spectral density, defined as 

! 

ˆ f "( ) = ˆ I "( )
2

. The periodogram 

! 

ˆ f "( ) will show peaks in its power 

at frequencies most correlated with the data.  

 There are many widely recognized theoretical advantages of Fourier analysis (see e.g. 

Brillinger 1981 or Shumway and Stoffer 2000), two of which in particular provide convenient 

approaches for testing empirical movement data against null random walk models. First, an exact 

analytic relationship exists between both independent identically distributed (i.i.d.) normal 

distributions (white noise) and AR(1) (red noise) models and their spectral densities (Gilman et 

al. 1963, Shumway and Stoffer 2000). Second, the knowledge that 

! 

2 ˆ f "k( ) / f "( ) , where 

! 

"  is 

close to 

! 

"
k
, is asymptotically chi-squared distributed with two degrees of freedom (Shumway 

and Stoffer 2000) guides significance testing by providing asymptotic test statistics from which 

to estimate a confidence envelope around the estimated spectrum. Note that the dependence of 

the periodogram values on 

! 

"
k
 alone (but not on tj) and integration over time in Eq. A1 reflects 

the stationarity assumption, inhibiting it from detecting changes in the frequency content of 

! 

X
N  

as a function of time tj. For this, task, we can employ wavelet analysis. Finally, software (e.g. the 

R environment) and strategies (Press et al. 2007) for estimating the spectral density from the 

periodogram are highly developed . 

 Wavelet analysis allows temporally local estimation of dominant frequencies correlated with 

! 

X
N  by employing functions (wavelets) that are dilated or contracted versions of an analyzing 

wavelet (function) ψ, translated across the time series. Wavelet analysis has an interesting 

literature and theory that we do not review here, discussing only the necessary motivating 

material and referring readers to Blatter (1998), Torrence and Compo (1998) or Carmona et al. 

(1998) for introductions to this topic, or any of Cazelles et al. (2007), Cazelles et al. (2008), or 
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Dong et al. (2008) for recent reviews oriented towards the biological sciences. The continuous 

wavelet transform with L2-normalization of the discrete time series 

! 

X
N  at scale a and time 

! 

t
i
 is 

defined by 

! 

W a,  t j[ ] =
1

a
X j" *

l # j( )$t

a

% 

& 
' 

( 

) 
* 

l=1

N

+  (Eq. A2) 

where ψ* denotes the complex conjugate of the analyzing wavelet function ψ. We use the Morlet 

wavelet function ψ(η) = π-1/4exp(-iω0η)exp(-η2/2), where ω0 controls the oscillation frequency. 

Choosing ω0 to be 2π, as is done in our analyses, preserves an approximate inverse relationship 

between the frequency of the power spectrum of a Fourier analysis and scale of wavelet 

transform (Maraun and Kurths 2004). As with all applications of these methods in practice, the 

choice of scales (frequencies) is a set of discrete values, typically defined by 

! 

a
k

= s
0
2
k"k , k = 

0,1,…,K , where 

! 

s
0
 = 2Δt, and Δk and K depend on the analyzing wavelet, length and resolution 

of the data (Torrence and Compo 1998). The estimated wavelet power spectrum of 

! 

X
N  (also 

called the scalogram) is defined as the data array of squared modulus values 

! 

ˆ W = W [ak,  t j ]
2

, j = 

0,1,…,N-1, k = 0,1,…,K, and provides an estimate of the true wavelet spectrum. Averaging the 

scalogram in both the time and scale directions will reduce the variance of the estimate but 

increases its bias (Torrence and Compo 1998, Maraun et al. 2007).  

 Two features of the scalogram are necessary to consider when evaluating significance of 

scalogram values. First, in contrast with significance testing of periodogram values, estimating 

significance of scalogram values relies exclusively on bootstrapping (Torrence and Compo 

1998). For example, to test if a velocity time series is different from white or red noise, one 

would estimate the white and red noise parameters from 

! 

X
N  to generate a large number of 

replicate velocity time series and estimate quantiles for each modulus value 

! 

W [ak,  t j ]
2

. Second, 
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the cone-of-influence that demarcates the region of the scalogram in which edge effects on the 

scalogram are present (due to zero padding the original data for computational efficiency) is 

dependent on the choice of analyzing wavelet ψ and the scale 

! 

a
k
 (Torrence and Compo 1998). 

Since modulus values outside this cone-of-influence have been influenced by these edge effects, 

these values should be disregarded for purpose of statistical inference and cautiously interpreted 

biologically.  

 There are at least two potentially useful pieces of information that can be extracted from 

wavelet transforms. Both use a wavelet Parseval formula (Blatter 1998) which relates the total 

variance σ 2 of 

! 

X
N  to its scalogram through the double integral 

! 

" 2 =
1

C#N

W a,t[ ]
2

a
2

dtda
RxR

*$$ , 

where Cψ is the wavelet specific constant 

! 

C" =
ˆ " (#)

2

#
 d#$  (Blatter 1998, Torrence and Compo 

1998), where 

! 

ˆ " (#)  denotes the Fourier transform of ψ. The first is a time series of percent 

variance explained by a band of frequencies from 

! 

a j
1

 to 

! 

a j
2

, at time 

! 

t j , which is calculated as 

! 

" per

2 (t j ) =
1

A

|W [ak,t j ] |
2

akk= j1

k= j2

# , where 

! 

A =
|W [ak,t j ] |

2

akk= 0

k=K

"
j= 0

N

"  is a normalizing constant. Peaks from 

the periodogram would be a natural first choice in selecting frequencies to investigate the 

! 

" per

2  

function. Second, the time series of percent variance explained in autocorrelative patches at each 

time 

! 

t j , 

! 

" sig

2
(t j ) =

1

A

#(ak ) |W [ak,t j ] |
2

akk= 0

k=K

$ , where 

! 

"(a
k
) is a Dirac measure taking on the value of 

1 when 

! 

a
k
 is inside a significant patch (warm colored areas in the scalogram), may be useful for 

detecting qualitative trends in the proportion of frequencies with significant complex 

autocorrelation compared to those of red or white noise (Wittemyer et al. 2008). For any 

investigations of velocity data, however, it is important to acknowledge that both of these 
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statistics are somewhat compromised by the finite nature of the data and correlations of the 

modulus values in the time and scale directions (Maraun et al. 2007). 

 With two contiguous time series, cross wavelet analysis can aid in comparing the time-

specific movements of two individuals. Let 

! 

ˆ W 
1
 and 

! 

ˆ W 
2
 denote the scalograms for the time series 

! 

X
1

N  and 

! 

X
2

N  of two separate individuals with the same sampling parameters, respectively. The 

wavelet cross spectrum is estimated as 

! 

WCS
1,2

[ak,  t j ] = ˆ W 
1
[ak,  t j ],

ˆ W 
2

*
[ak,  t j ] , where * denotes 

the complex conjugate, and the wavelet coherency is estimated as  

! 

WCO
1,2

=
S(WCS

1,2
)

S( ˆ W 
1
)

1/ 2

S( ˆ W 
2
)

1/ 2
,  (Eq. A3) 

where S denotes a smoothing operator. Using the Morlet wavelet 

! 

WCS
1,2

 is complex. Thus, we 

can obtain both the strength of correlation between the two individuals from the modulus squared 

values 

! 

WCO
1,2

2 , ranging from 0 to 1, with 1 denoting a linear relationship, and 0 denoting no 

relationship, and the phase lag between them (measured in radians from −π to π). Smoothing in 

the time and scale dimensions is essential when computing Eq. A3 (see Maraun and Kurths 2004 

for details).  

 

A2. Stochastic Simulation 

 For ease of notation, we will assume there is only one type of behavior in the time interval [ti, 

ti+1], allowing us to ignore 

! 

"
k
 and drop the subscripts on m, µ, σ. The starting point is the 

general stochastic differential equation  

! 

r(t) = r(0) + µ r(s),s( )ds
0

t

" + # r(s),s( )dB s( )
0

t

"  (Eq. A4) 
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in time s and space r(s). Different methods for simulating solutions from Eq. A4 exist, depending 

on the functional forms for the drift µ  and diffusion σ  functions (Iacus 2008). Under the 

assumptions of constant drift µ = (µ, µ) and diffusion σ  = (σ, σ), for scalar values µ and σ, Eq. 

A4 reduces to  

! 

r(t) = r(0) + µds
0

t

" + #dB s( )
0

t

"   (Eq. A5) 

the Euler method is suitable for the goal of obtaining a stochastic movement trajectory from Eq. 

A5. Other methods (e.g. the various Milstein schemes) discussed in Iacus (2008) that increase 

approximation accuracy with the inclusion of second-order terms in the approximation of the 

drift and diffusion are equivalent to the Euler method in this case because of the assumed 

constancy of the drift and diffusion. 

 To simulate trajectories from Eq. A5, we obtained a random time ti+1 in minutes uniformly 

distributed on the interval [30 minutes, 90 minutes]. We then divided the interval [ti, ti+1] into 

half minute increments during which the Weiner process B(s) was assumed constant with mean 0 

and standard deviation 

! 

0.5  from which to obtain displacement in r(s). By repeating this 

process an appropriate number of times, and changing the values of µ and σ when necessary, we 

obtained movement trajectories from which to obtain sampled data from. Figure A1 shows the 

simulated and sampled paths and associated velocity of the movement trajectory used for 

producing Fig. 4 of the main text. 

 

A3. Additional simulation studies 

 There are several main objectives of the objectives of additional simulation study: i) include 

some simulations and discussion on the role of sampling interval Δt; and ii) simulate multiple 

movement trajectories for all synthetic scenarios to illustrate that the results are not an artifact of 
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the particular time series used to illustrate sample periodograms and scalograms. The results are 

shown in Figs. A2-A5, which confirm the utility of the methods discussed in the main text even 

at coarser sampling intervals, although the ability to detect locations of changes in the daily 

behavioral sequence does erode considerably, and demonstrate that the results are not an artifact 

of the particular time series shown in Fig. A1 used in the analysis summarized in Fig. 4 of the 

main text. 

 

A4. Additional lion and buffalo analyses 

 This section presents a summary (Table A1) and additional analyses and figures of the 

empirical data. 

For the lion dataset, the additional analyses are the correlation of movement with moonlight 

intensity and the scalogram value at the frequency ω = 1 cycle/day. The results are shown in 

figure A6. 

 The African buffalo data set consists in total of six individuals (Table A1). Each individual 

showed irregular crepuscular activity (Figs. A7-A12) and an associated peak at ω = 2 cycles/day 

in their periodogram, with individuals T12, T13, T16 and T17 also showing some additional 

activity around midnight, resulting in ω = 3 cycles/day dominating the periodogram (Figs. A8, 

A9, A11, A12). Two groups of three (T12, T13, T16 and T7, T15, T17, see table A1) overlapped 

in time sufficiently to conduct wavelet coherency analyses (Fig. 6 in the main text and Figs. 

A13-A17 of the appendix). Of the 6 pairs, two pairs (those formed by combining T17 with either 

T7 or T15) did not come close enough to compare movement statistics associated with within 

and between herds. The significant patches emerging in the wavelet coherence analyses for these 

pair (Figs. A16-A17) are likely spurious based on both consideration of biological dynamics, the 
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other four data sets for which fission-fusion dynamics are recorded, a examination of wavelet 

coherency patterns for simulated data sets in which there are no random walks across days (Fig. 

A18), a considerably more overall cyclical movement pattern than shown in the buffalo (Table 1 

of the main text). Of the four pair that involved fission-fusion herding events, all pairs clearly 

showed synchrony at distances of approximately less than 1 km (Figs. A19-A22). 

Table A1- Summaries of empirical data. All individuals were sampled with an interval of 1 hour. 

Data set Start date and time End date and time 

velocity 

data 

sample size 

percent 

velocity 

data missing 

Lion 5/19/05 22:12 11/17/05 1:38 4347 25 

Buffalo data sets     

T7 9/15/05 9:41 1/11/06 7:47 2830 6 

T12 (individual 1 

presented in main text) 7/14/05 14:35 12/8/05 0:16 3514 <1 

T13 (individual 2 

presented in main text) 7/15/05 9:02 10/29/05 20:49 2555 <1 

T15 9/15/05 16:06 12/27/05 4:23 2460 7 

T16 7/27/05 9:06 10/8/05 5:57 1748 6 

T17 8/23/05 7:34 4/20/06 18:09 5770 <1 

 

A5. Table of parameters used in the implementation of frequency and time-frequency analyses 

 For smoothing the Fourier periodograms, we used a modified Danielle smoother (Shumway 

and Stoffer 2000) as implement in R 2.6.2. Table A1 lists the number of adjacent data points 
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included in this smoother in both the positive and negative directions. Wavelet based analyses 

require additional choices about the range of scales, determined by the octave and voice 

parameters, and smoothing in both the time and frequency directions (Torrence and Compo 

1998, Maraun and Kurths 2004).  

Table 2- Summary of parameters used in implementing frequency and time-frequency methods. 

 Fourier method Wavelet method 

Data set Frequency 

smoothing 

Number 

of octaves 

Number 

of voices 

Smoothing 

in scale 

Smoothing 

in time 

Simulated data Adjacent 3 points 8 24 0 0 

Lion data Adjacent 3 points 8 24 0 0 

Buffalo data sets      

T7 Adjacent 3 points 8 24 0 0 

T12 Adjacent 3 points 8 24 0 0 

T13 Adjacent 3 points 8 24 0 0 

T15 Adjacent 3 points 8 24 0 0 

T16 Adjacent 3 points 8 24 0 0 

T17 Adjacent 3 points 9 24 0 0 

T12 cross T13 - 8 24 0.5 2 

T12 cross T16 - 8 24 0.5 2 

T13 cross T16 - 8 24 0.5 2 

T7 cross T15 - 8 24 0.5 2 

T7 cross T17 - 8 24 0.5 2 

T15 cross T17 - 8 24 0.5 2 
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