## The MCL-1 BH3 Helix is an Exclusive MCL-1 inhibitor and Apoptosis Sensitizer

Michelle L. Stewart, Emiko Fire, Amy E. Keating, and Loren D. Walensky

## SUPPLEMENTARY METHODS

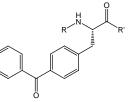
Anti-apoptotic protein production. Transformed *Escherichia coli* BL21 (DE3) were cultured in ampicillin-containing Luria Broth and protein expression was induced with 0.5 mM isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG). The bacterial pellet was resuspended in buffer (250 mM NaCl, 20 mM Tris, complete protease inhibitor tablet, pH 7.2), sonicated, and after centifugation at 45,000*xg* for 45 minutes, the supernatant was applied to a glutathione-agarose (Sigma) column and washed with PBS. On-bead digestion of GST-tagged proteins was accomplished by overnight incubation at room temperature in the presence of thrombin (75 units) in PBS (3 mL), and the cleaved proteins were purified by size exclusion chromatography (SEC) using 150 mM NaCl, 50 mM Tris, pH 7.4 buffer conditions.

**Cytochrome** *c* **release assays.** Isolated mouse liver mitochondria (0.5 mg/mL) were incubated at 37°C for 40 minutes in the presence of a serial dilution of MCL-1 SAHB<sub>D</sub>, singly or in combination with BID BH3 peptide. The pellet and supernatant fractions were isolated by centifugation, and cytochrome *c* was

quantitated using a colorimetric ELISA assay (R&D Systems). Percent cytochrome *c* released into the supernatant (%cyto $c_{sup}$ ) from releasable mitochondrial pools was calculated according to the following equation: %cyto*c*=[(cyto $c_{sup}$ -cyto $c_{backgr}$ )/(cyto $c_{total}$ -cyto $c_{backgr}$ )]\*100, where background release represents cytochrome *c* detected in the supernatant of vehicle-treated samples and total release represents cytochrome *c* measured in 1% Triton-X 100 treated samples.

**MCL-1 SAHB photocrosslinking**. OPM2 cellular lysates were generated by vortexing cells  $(1 \times 10^7)$  with ice cold Buffer A (50 mM Tris pH 7.4, 150 mM NaCl, 1% CHAPS, 1mM EDTA, 1.5 mM MgCl<sub>2</sub>, EDTA-free complete protease inhibitor cocktail [Roche]), followed by incubation on ice for 10 minutes and collection of the supernatant by centrifugation. After pre-clearing the supernatant for 1 hour with high capacity streptavidin agarose (Pierce) at 4°C, lysates were incubated with MCL-1 SAHB<sub>D</sub> (10  $\mu$ M) or MCL-1 pSAHB<sub>D</sub> (10  $\mu$ M) and irradiated with 365 nm ultraviolet light for 3 hours. Unreacted peptide was removed by overnight dialvsis at 4°C in Buffer B (200 mM NaCl, 50 mM Tris pH 7.4) using 6-8 kD molecular weight cut-off D-Tube dialyzers (EMD Biosciences). After addition of SDS to a final concentration of 0.2%, biotin capture was achieved by incubation with high capacity streptavidin agarose (50 µL 50% slurry/reaction) for 2 hours at room temperature. The streptavidin beads were successively washed (3x) at room temperature in 1% SDS in PBS, 1 M NaCl in PBS, and then 10% ethanol in PBS. Proteins crosslinked to the biotinylated peptide were eluted by boiling for

30 minutes in a 10% SDS solution (Promega) containing D-biotin (10 mg/mL), electrophoresed using 4%–12% gradient Bis-Tris gels (Invitrogen), and then subjected to MCL-1 western analysis (S19 antibody, Santa Cruz Biotechnology).


**Cellular uptake assay.** OPM2 cells ( $4 \times 10^6$ ) were incubated with vehicle or FITC-SAHB ( $40 \mu$ M) in Opti-MEM medium (Invitrogen) at 37°C for 1.5 hours in the dark. Cells were washed once with PBS, incubated with 0.25% trypsin for 5 minutes, washed twice with PBS, and Iysed on ice with 200  $\mu$ L cold Triton X-100 lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1% Triton X-100, complete protease inhibitor pellet). Cellular debris was pelleted at 14,000x*g* for 10 minutes at 4°C and the supernatant was collected, electrophoresed, and subjected to fluorescence imaging using a Typhoon 9400 (GE Healthcare Life Sciences).

## Supplementary Table 1 BH3 peptide compositions.

| Peptide<br>gure 1: Identification of an MCL-1-select                       | Sequence                                                      | N-terminus                   | MW           | <b>M</b> / |
|----------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|--------------|------------|
| BIM SAHB,                                                                  | IWIAQELRXIGDXFNAYYARR                                         | FITC-βAla-                   | 3064         | 1022       |
| a                                                                          | DIIRNIARHLAXVGDXBDRSI                                         |                              |              | 953        |
|                                                                            |                                                               | FITC-βAla-                   | 2856         | _          |
|                                                                            | NLWAAQRYGRELRXBSDXFVDSFKK                                     | FITC-βAla-                   | 3058         | 102        |
|                                                                            | LEVESATQLRXFGDXLNFRQKL                                        | FITC-βAla-                   | 3073         | 102        |
| PUMA SAHB <sub>A</sub>                                                     | QWAREIGAQLRXBADXLNAQY                                         | FITC-βAla-                   | 2925         | 97         |
| BAK SAHB <sub>A</sub>                                                      | QVGRQLAXIGDXINRRYD                                            | FITC-βAla-                   | 2583         | 86         |
| BAX SAHB <sub>A</sub>                                                      | ASTKKLSESLKXIGDXLDSN                                          | FITC-βAla-                   | 2614         | 87         |
| BOK SAHB <sub>A</sub>                                                      | RLAEVSAVLLXLGDXLEBIR                                          | FITC-βAla-                   | 2690         | 89         |
| MCL-1 SAHB                                                                 | KALETLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2893         | 96         |
| BCL-2 SAHB                                                                 | VVHLTLR <b>X</b> AGD <b>X</b> FSRRY                           | FITC-βAla-                   | 2499         | 83         |
| BCL-X, SAHB                                                                | AVKQALRXAGDXFELRY                                             | FITC-βAla-                   | 2445         | 81         |
| BCL-W SAHB                                                                 | LHQABRXAGDXFETRF                                              | FITC-βAla-                   | 2370         | 79         |
| BFL-1/A1 SAHB                                                              | KEVEKNLKXSLDXVNVVSV                                           | FITC-βAla-                   | 2609         | 87         |
| ure 2: Binding and specificity determin                                    |                                                               | · · · • p· · · •             |              |            |
| igure 2a, 2b: MCL-1 SAHB <sub>A</sub> mutagenes                            | sis scan.<br>KALETLRXVGDXVQRNHETAF                            | FITC-βAla-                   | 2893         | 96         |
| MCL-1 SAHB                                                                 |                                                               |                              |              | _          |
| MCL-1 SAHB <sub>A</sub> K208A                                              | AALETLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2836         | 94         |
| MCL-1 SAHB <sub>A</sub> A209E                                              | KELETLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2951         | 98         |
| MCL-1 SAHB <sub>A</sub> L210A                                              | KAAETLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2851         | 95         |
| MCL-1 SAHB <sub>A</sub> E211A                                              | KALATLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2835         | 94         |
| MCL-1 SAHB <sub>A</sub> T212A                                              | KALEALRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2863         | 95         |
| MCL-1 SAHB L213A                                                           | KALETARXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2851         | 95         |
| MCL-1 SAHB <sub>A</sub> R214A                                              | KALETLAXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2808         | 93         |
| MCL-1 SAHB V216A                                                           | KALETLRXAGDXVQRNHETAF                                         | FITC-βAla-                   | 2865         | 95         |
| MCL-1 SAHB <sub>A</sub> G217A                                              | KALETLRXVADXVQRNHETAF                                         | FITC-βAla-                   | 2907         | 97         |
| MCL-1 SAHB <sub>4</sub> G217E                                              | KALETLRXVEDXVQRNHETAF                                         | FITC-βAla-                   | 2965         | 98         |
| · · · · · · · · · · · · · · · · · · ·                                      | KALETLRXVGAXVQRNHETAF                                         | FITC-βAla-                   | 2905         | 95         |
| MCL-1 SAHB <sub>A</sub> D218A                                              |                                                               |                              |              |            |
| MCL-1 SAHB <sub>A</sub> V220A                                              | KALETLRXVGDXAQRNHETAF                                         | FITC-βAla-                   | 2865         | 95         |
| MCL-1 SAHB <sub>A</sub> V220F                                              | KALETLRXVGDXFQRNHETAF                                         | FITC-βAla-                   | 2941         | 98         |
| MCL-1 SAHB <sub>A</sub> Q221A                                              | KALETLRXVGDXVARNHETAF                                         | FITC-βAla-                   | 2836         | 94         |
| MCL-1 SAHB <sub>A</sub> R222A                                              | KALETLRXVGDXVQANHETAF                                         | FITC-βAla-                   | 2808         | 93         |
| MCL-1 SAHB <sub>A</sub> N223A                                              | KALETLRXVGDXVQRAHETAF                                         | FITC-βAla-                   | 2850         | 95         |
| MCL-1 SAHB <sub>A</sub> H224A                                              | KALETLRXVGDXVQRNAETAF                                         | FITC-βAla-                   | 2827         | 94         |
| MCL-1 SAHB E225A                                                           | KALETLRXVGDXVQRNHATAF                                         | FITC-βAla-                   | 2835         | 94         |
| MCL-1 SAHB T226A                                                           | KALETLRXVGDXVQRNHEAAF                                         | FITC-βAla-                   | 2863         | 95         |
| MCL-1 SAHB A227E                                                           | KALETLRXVGDXVQRNHETEF                                         | FITC-βAla-                   | 2951         | 98         |
| MCL-1 SAHB₄F228A                                                           | KALETLRXVGDXVQRNHETAA                                         | FITC-βAla-                   | 2817         | 94         |
| igure 2c: MCL-1 SAHB staple scan.                                          | -                                                             |                              |              |            |
| MCL-1 BH3                                                                  | KALETLRRVGDGVQRNHETAF                                         | FITC-βAla-                   | 2857         | 95         |
| MCL-1 SAHB                                                                 | KALETLRXVGDXVQRNHETAF                                         | FITC-βAla-                   | 2893         | 96         |
| MCL-1 SAHB <sub>B</sub>                                                    | KALXTLRXVGDGVQRNHETAF                                         | FITC-βAla-                   | 2821         | 96         |
|                                                                            | KALETLRRVXDGVXRNHETAF                                         |                              |              | _          |
| MCL-1 SAHB <sub>c</sub>                                                    |                                                               | FITC-βAla-                   | 2921         | 97         |
| MCL-1 SAHB                                                                 | KALETLRRVGDGVXRNHXTAF                                         | FITC-βAla-                   | 2850         | 95         |
| MCL-1 SAHB <sub>E</sub>                                                    | KALETLRRVGDGVQRXHETXF                                         | FITC-βAla-                   | 2922         | 97         |
| ure 3: Crystal structure of the MCL-1 S                                    | AHB <sub>ρ</sub> /MCL-1ΔNΔC complex.<br>KALETLRRVGDGVXRNHXTAF | Acotyl RAIo                  | 2502         | 83         |
| MCL-1 SAHB <sub>D</sub><br>ure 4: MCL-1 SAHB <sub>2</sub> dissociates MCL- | 1/BAK and sensitizes BAK-dependent mitochondrial cytochi      | Acetyl-βAla-                 | 2302         | 0.         |
|                                                                            | mpetitive fluorescence polarization assay.                    |                              |              |            |
| BAK SAHB                                                                   | OVGROLAXIGDXINRRYD                                            | FITC-βAla-                   | 2583         | 86         |
| MCL-1 BH3                                                                  | KALETLRRVGDGVQRNHETAF                                         | Acetyl-βAla-                 | 2509         | 83         |
| MCL-1 SAHB                                                                 | KALETLRXVGDXVQRNHETAF                                         | Acetyl-βAla-                 | 2546         | 84         |
| MCL-1 SAHB <sub>B</sub>                                                    | KALXTLRXVGDGVORNHETAF                                         | Acetyl-βAla-                 | 2474         | 82         |
| MCL-1 SAHB                                                                 | KALETLRRVXDGVXRNHETAF                                         | Acetyl-βAla-                 | 2574         | 85         |
| 6                                                                          |                                                               |                              |              | _          |
| MCL-1 SAHB <sub>D</sub><br>MCL-1 SAHB <sub>F</sub>                         | KALETLRRVGDGVXRNHXTAF<br>KALETLRRVGDGVORXHETXF                | Acetyl-βAla-<br>Acetyl-βAla- | 2502<br>2574 | 83         |
| igure 4b: Sensitization of BAK-depend                                      | lent mitochondrial cytochrome <i>c</i> release.               |                              |              |            |
| MCL-1 SAHB <sub>D</sub>                                                    | KALETLRRVGDGVXRNHXTAF                                         | Acetyl-βAla-                 | 2502         | 83         |
| BID BH3                                                                    | DIIRNIARHLAQVGDSBDRSI                                         | Acetyl-                      | 2403         | 80         |
| igure 4c: Photoaffinity labeling of nativ                                  |                                                               | Diotin 0AL-                  | 0040         |            |
| MCL-1 SAHB                                                                 | RKALETLRRVGDGVXRNHXTAF                                        | Biotin-βAla-                 | 2840         | 94         |
| MCL-1 pSAHB <sub>D</sub><br>igure 4d: Dissociation of the native MC        | RKABpaETLRRVGDGVXRNHXTAF                                      | Biotin-βAla-                 | 2980         | 99         |
| MCL-1 SAHB                                                                 | RKALETLRRVGDGVXRNHXTAF                                        | Acetyl-βAla-                 | 2659         | 88         |
| ure 5 and Supplementary Figure 6: Ser                                      | nsitization of caspase-dependent apoptosis.                   |                              | 0050         |            |
| MCL-1 SAHB                                                                 | RKALETLRRVGDGVXRNHXTAF                                        | Acetyl-βAla-                 | 2659         | 88         |
|                                                                            | LEVESXTQLXRFGDKLNFRQKL                                        | Acetyl-                      | 2710         | 90         |
| BFL-1/A1 SAHB <sub>A</sub>                                                 | KEVEKNLKXSLDXVNVVSV                                           | Acetyl-βAla-                 | 2260         | 75         |
| MCL-1 SAHB                                                                 | RKALETLRRVGDGVXRNHXTAF                                        | FITC-βAla-                   | 3005         | 100        |
|                                                                            | LEVESXTQLXRFGDKLNFRQKL                                        | FITC-βAla-                   | 3130         | 104        |
| BFL-1/A1 SAHB                                                              | KEVEKNLKXSLDXVNVVSV                                           | FITC-βAla-                   | 2609         | 87         |
| nino acid nomenclature:                                                    |                                                               |                              |              |            |
| 0                                                                          | Q                                                             |                              |              | ò          |
| H I                                                                        | H                                                             |                              | н            | 11         |



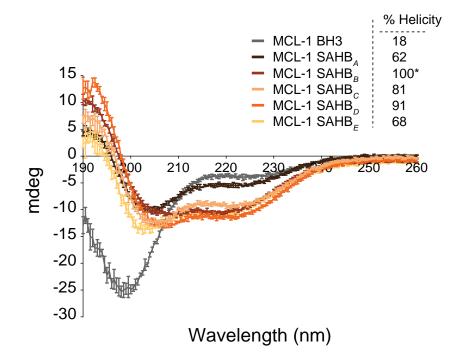




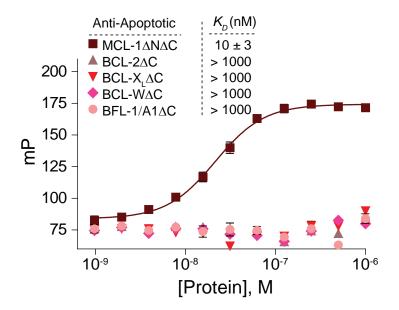
Bpa: 4-benzoyl-L-phenylalanine

| а  | BCL-X <sub>L</sub> ΔC              | K <sub>D</sub> (nM) |
|----|------------------------------------|---------------------|
| •  | MCL-1 SAHB                         | > 1000              |
|    |                                    | > 1000              |
|    | BIM SAHB <sub>A</sub>              | 1 ± 0.5             |
|    | BID SAHB <sub>A</sub>              | 28 ± 2              |
|    | PUMA SAHB <sub>A</sub>             | 9 ± 1               |
|    | BAK SAHB <sub><math>A</math></sub> | 15 ± 3              |
| Ι. |                                    |                     |
| D  | BFL-1/A1∆C                         | $K_{D}(nM)$         |
|    | MCL-1 SAHB <sub>4</sub>            | >1000               |
|    | NOXA SAHB <sub>A</sub>             | 416 ± 172           |
|    |                                    |                     |

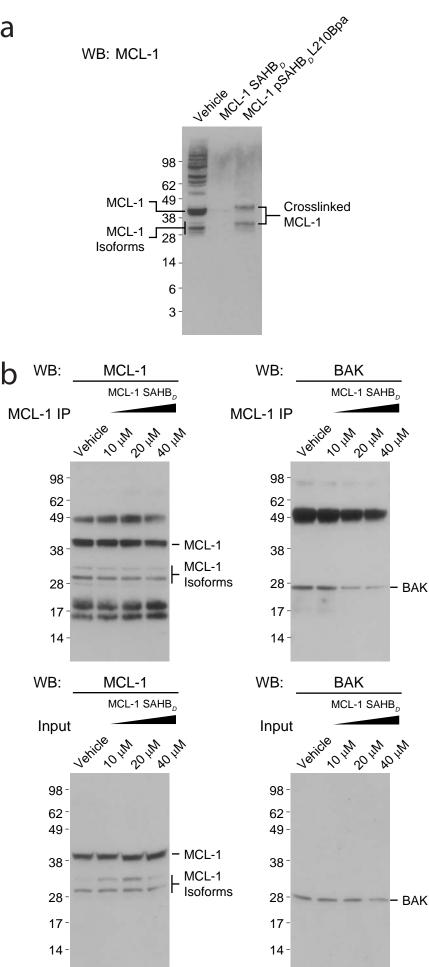
**Supplementary Table 2** (a) Dissociation constants for the interactions of MCL-1 $\Delta$ N $\Delta$ C-binding SAHBs with BCL-X<sub>L</sub> $\Delta$ C. Only MCL-1 and NOXA SAHB<sub>A</sub>s displayed selectivity for MCL-1 $\Delta$ N $\Delta$ C versus BCL-X<sub>L</sub> $\Delta$ C by FPA. Data are mean and s.d. for experiments performed in at least triplicate. (b) Dissociation constants for the binding interactions of MCL-1 and NOXA SAHB<sub>A</sub>s with BFL-1/A1 $\Delta$ C. Whereas NOXA SAHB<sub>A</sub>bound to BFL-1/A1 $\Delta$ C, MCL-1 SAHB<sub>A</sub> was selective for MCL-1 $\Delta$ N $\Delta$ C, as measured by FPA. Data are mean and s.d. for experiments performed in at least triplicate.


| Supplementary Table 3               | Data collection and refinement statistics |
|-------------------------------------|-------------------------------------------|
| for the MCL-1 SAHB <sub>D</sub> /MC | L-1∆N∆C crystal structure.                |

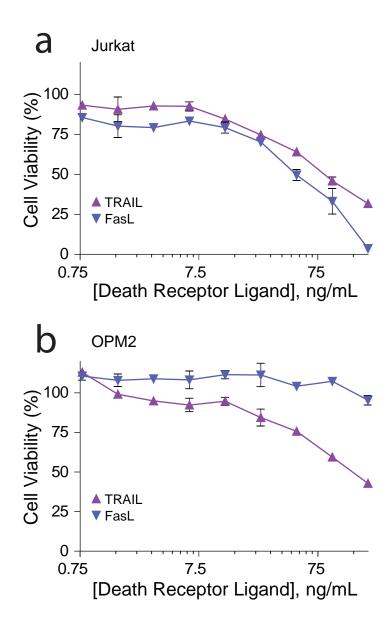
|                               | MCL-1 SAHB <sub>D</sub> /MCL-1 $\Delta$ N $\Delta$ C |
|-------------------------------|------------------------------------------------------|
| Data collection               |                                                      |
| Space group                   | P212121                                              |
| Cell dimensions               |                                                      |
| a, b, c (Å)                   | 44.51, 56.87, 63.98                                  |
| α, β, γ (°)                   | 90, 90, 90                                           |
| Resolution (Å)                | 42.51-2.32                                           |
| R <sub>sym</sub>              | 4.8 (38.4)#                                          |
| Ι΄σΙ                          | 13.6 (4.8) #                                         |
| Completeness (%)              | 99.1 (100) <sup>#</sup>                              |
| Redundancy                    | 7 (6.8) #                                            |
| Refinement                    |                                                      |
| Resolution (Å)                | 42.51-2.32                                           |
| No. reflections               | 7371                                                 |
| $R_{\rm work} / R_{\rm free}$ | 23.1/27.5                                            |
| No. atoms                     | 1351                                                 |
| Protein                       | 1133                                                 |
| Ligand/ion                    | 148                                                  |
| Water                         | 70                                                   |
| B-factors                     |                                                      |
| Protein                       | 85.0*                                                |
| Ligand/ion                    | 95.9 <sup>*</sup>                                    |
| Water                         | $85.0^{*}$                                           |
| R.m.s. deviations             |                                                      |
| Bond lengths (Å)              | 0.002                                                |
| Bond angles (°)               | 0.591                                                |


<sup>#</sup>Values in parentheses are for highest-resolution shell (2.42 Å - 2.32 Å). <sup>\*</sup>Total *B*-factor as defined by TLS refinement using PHENIX ( $B_{total} = B_{tls} + B_{individual}$ ).

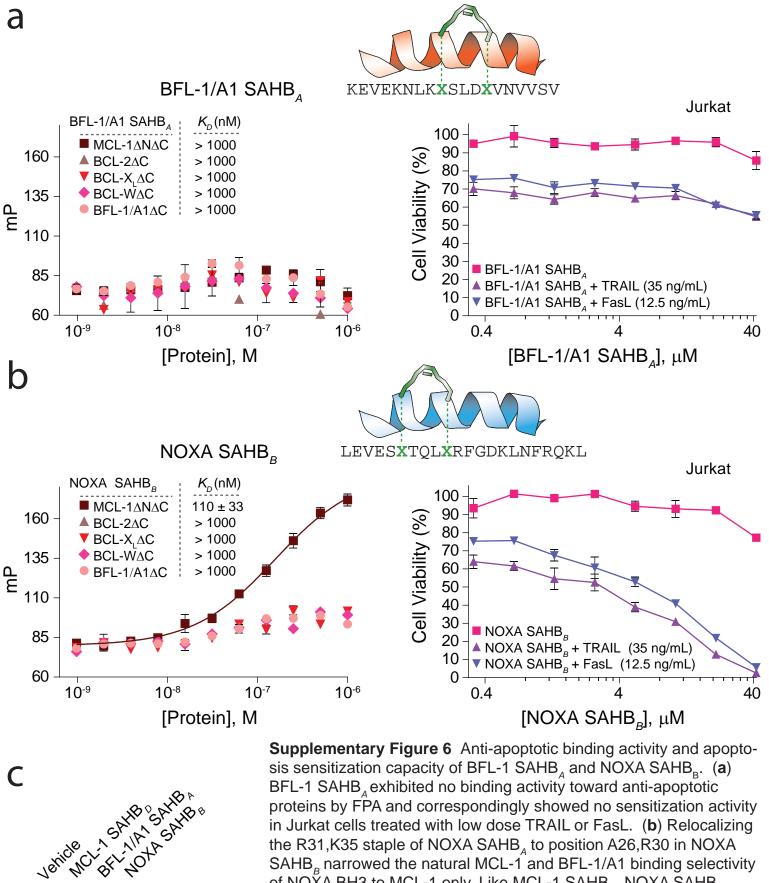
| hBIM    | WIAQELRRIGDE <b>F</b> NAYY |
|---------|----------------------------|
| hBAD    | RYGRELRRBSDE <b>F</b> VDSF |
| hNOXA   | ESATQLRRFGDKLNFRQ          |
| mNOXA-A | EFAAQLRKIGDKVYCTW          |
| mNOXA-B | DECAQLRRIGDKVNLRQ          |
| hMCL-1  | KALETLRRVGDG <b>V</b> QRNH |


**Supplementary Figure 1** Sequence alignment of select BH3 domains reveals key differences in core hydrophobic residues that engage the canonical BH3 pocket of anti-apoptotic proteins. The MCL-1 BH3 contains a unique LXXVGXXV motif. Both the BCL-2/BCL-X<sub>L</sub>-selective BAD BH3 domain and the pan-anti-apoptotic binding BIM BH3 domain contain an F at the position corresponding to V220 in MCL-1 BH3. Interestingly, the murine NOXA BH3 domains, which exhibit selectivity for MCL-1, both contain a V in this position.




**Supplementary Figure 2** Circular dichroism of MCL-1 SAHBs. MCL-1 SAHBs exhibit marked enhancement of  $\alpha$ -helical structure compared to the corresponding unmodified peptide. The CD data are plotted as wavelength vs. millidegree. To estimate percent  $\alpha$ -helicity, the precise peptide concentrations were confirmed by amino acid analysis, the CD data converted to mean residue ellipticity ( $\theta$ ), and  $\alpha$ -helicity calculated as previously described<sup>1,2</sup>. Data are mean and s.d. for experiments performed in at least triplicate. \*, exceeds the calculated ideal  $\alpha$ -helicity for an undecapeptide standard<sup>1,2</sup>.




**Supplementary Figure 3** MCL-1 binding specificity of MCL-1 SAHB<sub>D</sub>. Like FITC-MCL-1 SAHB<sub>A</sub>, FITC-MCL-1 SAHB<sub>D</sub> displayed a potent and exclusive interaction with MCL-1 $\Delta$ N $\Delta$ C, as evidenced by FPA performed against a broad panel of anti-apoptotic targets. Data are mean and s.d. for experiments performed in at least triplicate.



Supplementary Figure 4 MCL-1 SAHB photocrosslinking and MCL-1/BAK co-immunoprecipitation western analyses. (a) The photoreactive MCL-1 pSAHB, generated by replacing L210 with a benzophenone-bearing non-natural amino acid (Bpa), directly crosslinked to native MCL-1 within an OPM2 cellular lysate, whereas no covalent crosslinking was observed for MCL-1 SAHB<sub>o</sub>, which lacked the photoreactive benzophenone moiety. The anti-MCL-1 S19 antibody specifically recognized the major cellular form of MCL-1 (~40 kD) and the less abundant lower molecular weight MCL-1 isoforms. The photocrosslinked MCL-1 pSAHB,/MCL-1 species were correspondingly upshifted by a molecular weight of ~3 kD, which corresponds to the added mass of MCL-1  $pSAHB_{D}$ . (b) The native interaction between BAK and MCL-1 was dose-responsively disrupted by treatment of OPM2 cells with MCL-1 SAHB, as assessed by MCL-1 immunoprecipitation and BAK western analysis. The anti-MCL-1 S19 antibody immunoprecipitated the major cellular form of MCL-1 (~40 kD) and the less abundant lower molecular weight MCL-1 isoforms from the OPM2 lysate; the heavy and light chains of immunoglobulin were also detected. The identical blot was stripped and reprobed with the BAK(NT) antibody and monomeric BAK was identified at ~28 kD. The MCL-1 and BAK bands were also detected in the corresponding input control blots. Vehicle, deionized water.



**Supplementary Figure 5** Sensitivity of Jurkat and OPM2 cells to treatment with death receptor agonists. Jurkat and OPM2 cells were treated with increasing doses of TRAIL or Fas ligand (FasL), and cell viability was measured at 24 hours by MTT assay. Whereas TRAIL induced apoptosis of both Jurkat and OPM2 cells, only Jurkat cells were sensitive to FasL. Data are mean and s.d. for experiments performed in at least triplicate.



98 -

14 -

6 -

3

FITC-SAHB

Fluorescence

the R31,K35 staple of NOXA SAHB<sub>A</sub> to position A26,R30 in NOXA SAHB<sub>B</sub> narrowed the natural MCL-1 and BFL-1/A1 binding selectivity of NOXA BH3 to MCL-1 only. Like MCL-1 SAHB<sub>D</sub>, NOXA SAHB<sub>B</sub> sensitized the apoptotic response of Jurkat cells to TRAIL and FasL, as measured by MTT assay at 24 hours. (c) Lysates prepared from OPM2 cells treated with the indicated FITC-SAHBs contained similar intracellular levels of MCL-1 SAHB<sub>D</sub> and NOXA SAHB<sub>B</sub>, whereas the negative control BFL-1/A1 SAHB<sub>A</sub> exhibited even greater cellular uptake. Binding and cellular data are mean and s.d. for experiments performed in at least triplicate. Vehicle, deionized water.

## SUPPLEMENTARY REFERENCES

- 1. Bird, G.H., Bernal, F., Pitter, K. & Walensky, L.D. Chapter 22 Synthesis and biophysical characterization of Stabilized Alpha-helices of BCL-2 Domains. *Methods Enzymol* **446**, 369-86 (2008).
- 2. Forood, B., Feliciano, E.J. & Nambiar, K.P. Stabilization of alpha-helical structures in short peptides via end capping. *Proc Natl Acad Sci U S A* **90**, 838-42 (1993).