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APPENDIX A: STOCHASTIC DIFFERENTIAL
EQUATION

In the main text, we introduced a model of branch-
ing random walks that are subject to a global constraint
(see Eqs. (1,2,3)). Here, we show that up to higher or-
der terms (h.o.t.), the dynamics of such a constrained
branching random walk (CBRW) is described by

ct+ε − ct = ε
[
(L − 2u) ct − 〈ct |

(
L† − 2u

)
u〉ct

]
+
√

ε
[
η
√

2ct − 〈u | η
√

2ct〉ct

]
. (A1)

As a corollary, the mean concentration field satisfies

∂tct = (L − 2u) ct − 〈ct | (L† − 2u) u〉ct (A2)

in the limit ε → 0. Equation (A2) was crucial to our
line of arguments in the main text (where it was cited as
Eq. 4) as it made evident that the non-linear second term
on the right hand side can be eliminated by a suitable
choice of the selection function u(x).

In order to prove Eq. (A1), we first combine the
branching process Eq. (1) and the selection step Eq. (2)
into a single equation of motion, and then eliminate elim-
inate λ, using the constraint Eq. (3).

Inserting Eq. (1) into Eq. (2) yields

ct+ε = (1− λ)
[
ct + εLct +

√
2εctη

]
(A3)

Now it is important to note that λ only has to be deter-
mined up to order O(ε),

λ =
√

ελs + ελd + h.o.t . (A4)

The ansatz Eq. (A4) is chosen such that it leads to a
Markov process for ct in continuous time (ε → 0). It can
be generally shown that such a process has determinis-
tic O(ε) and stochastic O(ε1/2) contributions, and that
higher order terms can be neglected in the limit ε → 0 [1].
The components λs and λd correspond to the stochastic
and the deterministic part of the mortality rate, respec-
tively. Inserting Eq. (A4) in Eq. (A3), one obtains

ct+ε − ct = ε
(
Lct − λdct − λsη

√
2ct

)
+
√

ε
(
η
√

2ct − λsct

)
+ h.o.t. (A5)
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Next, we eliminate λ using the constraint Eq. (3). To this
end, we carry out the inner product of u(x) and Eq. (A5),
resulting in

0 = ε
[
〈u | Lct〉 − λd − λs〈u | η

√
2ct〉

]
+
√

ε
[
−λs + 〈u | η

√
2ct〉

]
(A6)

By requiring the O(
√

ε) and O(ε) terms in Eq. (A6) to
vanish, one first infers both λs and λd,

λs = 〈u | η
√

2ct〉 (A7)

λd = 〈u | Lct〉 − 〈u | λsη
√

2ct〉 . (A8)

The average in the last term is evaluated as

λsη
√

2ct = 〈u | η
√

2ct〉η(x)
√

2ct(x)

= 2
∫

x′
u(x′)

√
ct(x′)ct(x) η(x)η(x′)

= 2u(x)ct(x) . (A9)

Note that underlying reason for obtaining a term linear
in ct for the average in Eq. (A9) is the fact that the noise
is ∝ c1/2, which is ultimately a manifestation of the law
of large numbers.

Inserting Eq. (A9) into Eq. (A8), we can summarize
λd as

λd = 〈u | (L − 2u) ct〉 . (A10)

The stochastic dynamics Eq. (A1) of an entire time step
now follows from inserting our expressions Eqs. (A7, A10)
for λs and λd into Eq. (A5), resolving the average
λsη

√
2ct via Eq. (A9) and, finally, integration by parts:

〈u | (L − 2u) ct〉 = 〈ct |
(
L† − 2u

)
u〉 . (A11)

APPENDIX B: TIME DEPENDENT PROBLEMS

In the main text, we focused on branching random
walks with time-independent generators L. Here, we ex-
plicate how our formalism can be generalized to time de-
pendent problems with a dynamic generator L(t). Inter-
esting time-dependent problems include traveling waves
in fluctuating environments or transients within fixed
environments (e.g. How quickly does a population ap-
proach a fitness peak?).
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For this generalization, we have to allow the selection
function ut(x) as well as the “gauge” variable x0(t) to
become time-dependent.

The fundamental time step of the time-dependent
model may be summarized as follows: Suppose we have
the concentration field ct(x) after selection at time t,

〈ut | ct〉 = 1 . (B1)

To generate ct+ε, we first generate a branching random
walk,

c̃t+ε − ct = εLtct +
√

2εctη . (B2)

The operator Lt, shall contain the time-dependent gauge
x0(t), which is adjusted later on to fix the mean popula-
tion size,

Lt = L0
t − x0(t) . (B3)

The selection step now has to satisfy a slightly different
constraint

〈ut+ε | ct+ε〉 = 1 . (B4)

As in the main text, the constraint is enforced by a “fair”
culling of a population fraction λ,

ct+ε = c̃t+ε(1− λ) . (B5)

We next determine the stochastic PDE for ct in a very
similar way than in previous section for time-independent
problems. The only new bits come from the fact that ut

is time-dependent. We require ut to change determinis-
tically,

ut+ε = ut + ε∂tut + o(ε) , (B6)

i.e. ut has no stochastic component.
It can then be shown that the stochastic part and de-

terministic parts of λ are given by

λs = 〈ut | η
√

2ct〉 (B7)

λd = 〈ct | ∂t + L†t − 2ut | ut〉 . (B8)

Notice that the stochastic λs is the same as in the time-
independent case, however, the deterministic λd has ac-
quired a time derivative acting on ut.

The dynamics from ct to ct+ε may thus be summarized
as

ct+ε − ct = ε
[
(Lt − 2u) ct − 〈ct |

(
∂t + L†t − 2ut

)
ut〉ct

]
+
√

ε
[
η
√

2ct − 〈u | η
√

2ct〉ct

]
. (B9)

The mean concentration field obeys

∂tct = (Lt − 2u) ct − 〈ct |
(
∂t + L†t − 2ut

)
ut〉ct (B10)

In order to obtain a solvable model, we apply (as in the
main text) the trick to choose a selection function u =

u∗ such that the non-linearity in the moment equation
disappears,

∂tct = (Lt − 2u∗) ct . (B11)

To this end, we have to choose

−∂tu∗ =
(
L†t − 2u∗

)
u∗ . (B12)

Role of x0(t): Until now, the function x0(t) was en-
tirely arbitrary. For each choice of x0(t), we obtain a dif-
ferent solvable model via Eqs. (B11, G4). These different
solutions in general exhibit different expected population
sizes. If we are interested in a solution with a constant
mean population size n, x0(t) has to be fixed such that

0 = ∂tn =
∫

x

∂tct . (B13)

Using Eq. (B11), this implies

0 =
∫

x

(Lt − 2u∗) ct (B14)

=
∫

x

[
L0

t − x0(t)
]
ct − 2 (B15)

=
[∫

x

L0
t ct

]
− x0(t)n− 2 . (B16)

In going from the first to the second line of the previous
equation, we used the constraint 1 =

∫
x

u∗c, and inserted
expression Eq. (D1) for Lt.

If we insert, for instance, the operator Levo from
Eq. (7), we see that x0(t) is given by,

x0(t) = −2n−1 +
∫

x

xct , (B17)

which essentially represents the time dependent mean fit-
ness for large population sizes.

APPENDIX C: INTERPRETATION OF THE
TUNED MODEL

Among the three graphs depicted in Fig. 3 (main text),
only the function c(x) has an obvious interpretation as
the fitness wave profile. Using the results obtained in
Ref. [2], one can also give an intuitive interpretation of
the functions u∗(x) and g(x) ≡ u∗c. Both functions re-
late to the phenomenon of fixation. Imagine sampling an
individual at position x and labeling it with an inherita-
ble label (neutral mutation). As the dynamics proceeds,
the abundance of this label will change due to number
fluctuations and the fitness of its carriers. Eventually,
this label will either go extinct, or become fixed in the
population. The latter case occurs if the descendants of
the labeled individual take over the population.

Fixation events are much more likely if the initially
labeled individual belongs to the fitter part of the popu-
lation. We thus expect the probability of fixation to be
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a steeply increasing function of x, similar to the function
u∗(x). Indeed, the interpretation of u∗(x) is precisely
that of a fixation probability of a particle at position x,
which is derived below. It is interesting to note about
the defining equation Eq. (5) of u∗(x), that a very simi-
lar equation is well-known to describe the survival prob-
ability of an unconstrained random walk [3]. The only
difference is the pre-factor of 2 instead of 1 in the non-
linearity of Eq. (5).

The product g(x) ≡ u∗c also has an interesting inter-
pretation in terms of a probability density. (Note that,
as required for a probability density, the integral of g(x)
over x is equal to 1 by virtue of the constraint Eq. (3).)
g(x) represents the positional distribution function of
the lucky particle whose descendants eventually will take
over the population. Even though there must surely be a
lucky one at any time, we cannot pinpoint to this individ-
ual, simply because the fixation event depends on random
future events. Thus, the position of the “common ances-
tor of future generations” can only be described proba-
bilistically, similar to the position of quantum mechanical
particle. Also similar to quantum mechanics, the posi-
tional distribution function is the product of a bra and a
ket. In fact the expression for g(x),

g(x) =
c2evx/D∫
x

c2evx/D
(C1)

has been hypothesized earlier in Ref. [2] based on a mean-
field treatment of the fixation process inside traveling
waves.

Reasoning along the lines of Ref. [2] allows us to jus-
tify the above interpretation of the function u∗ as a fixa-
tion probability. Suppose, we attach inheritable neutral
markers at time τ to a part of the population. Let us
denote the concentration field corresponding to the la-
beled sub-population by cl(x, t), which has to be smaller
than the total concentration field, c(x, t), at any point.
Then, the mean concentration field cl(x, t) of labeled in-
dividuals will satisfy the same linear evolution equation
Eq. (B11) as the total concentration field does, namely,

∂tcl(x, t) = (L(t)− 2u∗) cl . (C2)

Since the system is comprised of a finite number of par-
ticles, it is inevitable that the labeled sub-population
eventually either goes extinct or takes over the whole
population. Thus, with a certain fixation probability F ,
the labeled population will approach the total population
cl → c(x, t) on long times. On the other hand, cl → 0
with a probability 1 − F . This implies that the average
of our labeled concentration field approaches

cl(x, t) ∼ F c(x, t) t →∞ . (C3)

The fixation probability F is a linear functional of the
initial concentration field cl(ξ, τ) of the labeled sub-
population. In fact, we will show that F is given by

F =
∫

ξ

cl(ξ, τ)u∗(ξ, τ) (C4)

justifying our interpretation u∗(ξ, τ) as the fixation prob-
ability of a particle present at position ξ at time τ . As
a sanity check, we notice that, due to the constraint
Eq. (3), Eq. (C4) correctly predicts a fixation probability
of F = 1 when the whole population is labeled, cl = c.

In order to proof Eq. (C4), we first express the solution
to equation Eq. (C2) as

cl(x, t) =
∫

ξ

G(x, t; ξ, τ)cl(ξ, τ) (C5)

in terms of a Green’s function G(x, t; ξ, τ), which is the
solution of Eq. (C2) corresponding to a δ-function initial
condition,

G(x, τ ; ξ, τ) = δ(x− ξ) . (C6)

On long times, we may argue as above that G becomes
proportional to c(x, t). However, viewed as a function
of ξ and τ , one can also show that G must become pro-
portional to u∗(ξ, τ). This follows from the fact that
the Green’s function not only satisfies the forward time
equation Eq. (C2) but also a corresponding backward
equation

−∂τG =
(
L†(t)− 2u∗

)
G , (C7)

where the operator on the right-hand-side acts on ξ. In-
cidentally, Eq. (C7) is the equation satisfied by u∗(ξ, τ),
see Eq. (B14). Thus, for large time differences t − τ ,
G(x, t; ξ, τ) must be proportional to both u∗(x, t) and
c(x, t).

G(x, t; ξ, τ) ∼ Au∗(ξ, τ)c(x, t) t →∞ . (C8)

Furthermore, the pre-factor A follows from the following
computation

c(x, t) =
∫

ξ

G(x, t; ξ, τ)c(ξ, τ) (C9)

= Ac(x, t)
∫

ξ

u∗(ξ, τ)c(ξ, τ) (C10)

= Ac(x, t) . (C11)

Evidently, A has to be equal to 1. The first line in
Eq. (C9) follows from the definition of the Green’s func-
tion. In the second line, we inserted Eq. (C8) for G.
In going from the second to the third line, we used the
constraint Eq. (3).

Finally, our claim Eq. (C4) now follows from inserting
Eq. (C8) with A = 1 into Eq. (C5) and using Eq. (C3).

APPENDIX D: APPLICATION TO NOISY
FISHER–KOLMOGOROV WAVES

In this section, we use our recipe of obtaining
constraint branching random walk (CBRW) models



4

with closed moment equations to study the impor-
tant class of stochastic Fisher-Kolmogorov-Petrovsky-
Piskunov (sFKPP) waves. To this end, we consider the
Liouvillean

LsFKPP = D∂2
x + sΘ(x) . (D1)

The unit step function could equally be replaced by any
other function, which saturates at the value 1 for large
x. Such models control the number of particles that are
in the tip of the wave by modulating the growth rates.

The moment equation of the CBRW model correspond-
ing to LsFKPP is described by Eqs. (5, 9) and the con-
straint Eq. (3), which can be combined to give

0 = (D∂2
x + sΘ(x) + v∂x)c− 2c2evx/D∫

x
c2evx/D

. (D2)

As an aside, the relation between c and u∗ requires that
the denominator in the last term of Eq. (D2) is finite.
This breaks down, when the speed parameter v is larger
than the deterministic Fisher wave speed v = 2

√
Ds,

which is the maximal achievable wave speed.
Let us introduce non-dimensional quantities

X = x/
√

D/s (D3)

V ≡ v/
√

Ds (D4)
C ≡ c/N . (D5)

In terms of these variables, the moment equation reads

0 = (∂2
X + Θ(X) + V ∂X)C − 2C

2
eV X

Ne

∫
X

C
2
eV X

, (D6)

where we have introduced an “effective” population size

Ne ≡ N
√

Ds . (D7)

Notice that, for large Ne, the last non-linear term in the
PDE in Eq. (D6) is relevant only for large x ∼ O(lnNe),
where it becomes of order O(1) due to the exponential.
The net-effect of the nonlinearity may be mimicked by a
cutoff in the growth rate at some position L, which we
determine up to the order O(ln lnN) in the following.

The position L of the effective cutoff can be deter-
mined by balancing the non-linearity in Eq. (D6) with
the reaction term CΘ(X) in Eq. (D6),

2CeV L ∼ Ne

∫
x

C
2
eV X . (D8)

To evaluate this condition, we need to refer to some
known results on deterministic Fisher waves with a cut-
off [4]: Their speed is, to leading order, given by

V ∼ 2− π2

L2
. (D9)

The wave profile of Fisher waves with cutoff satisfies for
0 � X � L

CeV X ∼ A
L

π
sinπX/L , (D10)

where A is an L (and Ne) independent constant. These
results from the cutoff approach are summarized, for in-
stance, in Ref. [4].

Inserting Eq. (D10) and Eq. (D9) into Eq. (D8) yields

eL ∼ NeL
3 (D11)

in the limit of large L. To evaluate the integral on the
right hand side in Eq. (D8), we used that the contribution
from x > L of higher order. Solving Eq. (D11) for L, we
find

L ∼ lnNe + 3 ln ln Ne (D12)

up to the second leading order. The wave speed in
the presence of a cutoff at position L now follows from
Eq. (D9) as

v − vF ∼
π2

L2
=

π2

(lnN)2

(
1− 3 ln ln N

lnN

)
. (D13)

The mean-field theory augmented by a heuristic cutoff
generates the first correction term. The second correc-
tion, however, requires a more subtle reasoning, which
could so far only be based on heuristic assumptions[4].
For our CBRW model, the second leading order correc-
tion follows naturally from the ln lnN correction to the
position of the cutoff. This correction in L is, ultimately,
the consequence of the non-local denominator of the cut-
off term in Eq. (D6).

APPENDIX E: FLUCTUATIONS

As explained in the main text, most noisy traveling
waves have fluctuating speeds and a constraint associated
with population sizes. The fluctuations in the speed of
the wave can be summarized by a wave diffusion constant
Dwave.

Noisy waves with tuned non-linearities resemble a dif-
ferent statistical ensemble of the same problem: the wave
speed is perfectly constant but the the mortality rate λ
fluctuates to keep up with the constraint. As explained
below, a diffusion constant Dλ can be associated with
these fluctuations as well. In the limit of large pop-
ulation sizes, where both statistical ensembles seem to
mirror the same universal dynamics, we expect both dif-
fusion constants to be proportional to each other. We
use this equivalence hypothesis to conjecture from an ex-
act expression for Dλ the asymptotic diffusivity of Fisher
waves, which is known, as well as the diffusivity of evo-
lutionary waves, which represents a novel prediction.

1. Fluctuations in the mortality rate

In our model of constrained branching random walks
(CBRWs), the mortality rate is on average constant,

λ = λd = 〈ct| (L† − 2u∗) u∗〉 . (E1)



5

In fact, the deterministic component λd vanishes at any
time. However, λ has a fluctuating component, λs, to
which we can associate a diffusion constant by

Dλ ≡
∫

τ

λ(t)λ(t + τ)/2 = λ2
s/2 (E2)

Inserting λs from Eq. (A7) and carrying out the average
yields

Dλ = 〈u∗ | u∗c〉 . (E3)

If particles diffuse, u∗ can be expressed in terms of c as
in Eq. (9), so that we obtain

Dλ =

∫
x

c3e+2vx/D(∫
x

c2e+vx/D
)2 . (E4)

2. Wave diffusion

Fluctuations in λ of the tuned model have a different
source than wave speed fluctuations of the constant pop-
ulation size model. Nevertheless, we conjecture that the
amplitude of both fluctuations are proportional to each
other

Dwave ∼ 4Dλ(D/v)2 , (E5)

in the limit of large population sizes. Our argument for
this conjecture is based on the observation that both
types of fluctuations have very similar effects in the
asymptotic limit. In the equation of motion, a change
∆v in wave speed results in a term +∆v∂xc. This term
approaches 2c∆v/v for large wave speeds, where the wave
profile assumes

c ∼ ϕ(x)e−vx/2D (E6)

with a slowly varying function ϕ(x) in the bulk of the
wave front. Thus, a change ∆v acts like a change
∆λ ∼ 2∆v/v in the mortality rate. This suggests that
the asymptotic fluctuations in the speed, as measured by
Dwave, are related to Dλ by Eq. (E5).

We would like to remark that our argument is based
on the crucial assumption that the amplitude of the fluc-
tuations in the mortality rate λ exhibits universal scaling
for large population sizes notwithstanding the particular
choice of u(x). This allows us to choose the (unique)
selection function u∗(x), for which the mortality rate λ
becomes uncorrelated in time. For any other choice of
the selection function, λ exhibits temporal correlations
(via its deterministic part λd) similar to the wave profile
c(x, t) and the wave speed in standard noisy traveling
waves.

3. Fisher wave diffusivity

Next, we use our conjecture Eq. (E5) to determine the
diffusion constant of noisy Fisher waves. To this end, we

evaluate the integrals in Eq. (E4) using Eqs. (D9, D10)
and Eq. (D12),

∫
x

c2e+vx/D =

√
D

s
N2

e

∫
X

C
2
e+V X (E7)

∼ N2
e

∫ L

0

dx (AπL sinπx/L)2

∼ N2
e L3 ∼ N2

e ln3 Ne∫
x

c3e+2vx/D =

√
D

s
N3

e

∫
X

C
3
e+2V X (E8)

∼ N3
e

∫ L

0

dXeV X/2 (AπL sinπX/L)3

∼ N3
e eV L/2A3

∫ ∞

0

dXX3e−V X/2

∼ N3
e eL

∼ N4
e ln3 Ne .

Notice that the integral in Eq. (E7) has support through-
out the bulk of the wave front, while the one in Eq. (E8)
is peaked close to the cutoff. Replacing the integrals in
Eq. (E4) by the above expressions and using conjecture
Eq. (E5), we finally obtain

Dwave ∼ ln−3 Ne (E9)

to leading order in ln N . This prediction is in agreement
with extensive simulations and a phenomenological the-
ory reported in Ref. [4], which supports our conjecture
Eq. (E5).

4. Diffusivity of evolutionary waves

We now proceed in the same way as above to conjec-
ture the (yet unknown) diffusion constant of evolutionary
waves.

Applying the cutoff approach to the equation of motion
Eq. (10) along the lines of Ref. [5], one derives that the
asymptotic behavior of the bulk density profile can be
expressed in terms of the Airy function as

cevx/2D ∼ v−3evL/2DAi(L + a0 − x) (E10)

where Ai(x) is the Airy function with its first zero at
a0 ≈ −2.7781, and

L ∼ (v/2D)2 − a0 (E11)

is the position of the cutoff (up to O(2D/v)). With the
wave profile at hand, we can determine the asymptotics
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of the integrals appearing in Eq. (E4),∫
x

c2e+vx/D = evL/Dv−6

∫ L

0

dxAi(L + a0 − x)2

∼ evL/Dv−6 (E12)∫
x

c3e+2vx/D ∼ v−9e3vL/2D

∫ L

0

dxevX/2DAi(L + a0 − x)3

∼ e2vL/Dv−9

∫ ∞

0

dxx3e−vx/2D

∼ e2vL/Dv−13 . (E13)

Evaluating Eq. (E4) with the help of Eqs. (E12, E13) and
using the conjecture Eq. (E5), we obtain

Dwave ∼ v−3 . (E14)

Note that this implies the scaling Dwave ∼ ln−1 N be-
tween diffusion constant and population size, since v ∼
ln1/3 N . The power law in Eq. (E14) is expected to hold
only for large values of the control parameter vD−2/3

introduced in the main text. For small speeds, on the
other hand, we expect the diffusion constant to saturate,
Dwave → 1.

APPENDIX F: DISCRETE FITNESS EFFECTS

For simplicity, our example of asexual adaptation was
formulated assuming a continuous random walk of geno-
types with diffusion constant D. For a given speed of
adaptation v, this is only appropriate if

v∆x

D
� 1 . (F1)

Intuitively, this condition comes about because of the ex-
ponential decay exp−vx/D of the frequency distribu-
tion in its tail. If Eq. (F1) is violated, the relative change
in the frequency distribution from one fitness value to the
next is of order 1, by which the continuous approximation
becomes questionable. Assuming our asymptotic large N
result v ∼ D2/3 ln[ND1/3]1/3, Eq. (F1) reads,

∆xD−1/3 ln[ND1/3]1/3 � 1 . (F2)

More concretely, we may assume that mutations have
fitness effect ∆x = s and occur at a rate m. Then, the
diffusion constant is given by D ∼ ms2/2. Inserting these
expressions in Eq. (F2 yields( s

m

)1/3

ln[N(ms2)1/3]1/3 � 1 . (F3)

If we are interested in the large N limit where the loga-
rithm is larger then 1, we have thus to require m � s.
At least for bacterial populations, this conditions seems
to be violated.

We are thus looking for a description for the CBRW
model using a discrete fitness lattice. To this end, we

assume that jumps occur only between nearest neigh-
bors; A is the jump rate i → i + ∆x, and B is the
rate for the reverse jump. Furthermore, we suppose to
have scaled time such that the effective diffusion constant
D = (A+B)∆x2/2 = 1. For this model, the u∗ equation
is obtained by using the discrete Laplacian

∂2
xu∗ → Au∗,i−1 − (A + B)u∗,i + Bu∗,i+1 , (F4)

where we introduced the notation fi ≡ f(i∆x). The
relation between mean density and u∗ changes to

ci = u∗,i

(
A

B

)i

/Γ . (F5)

The proportionality constant follows from the constraint,

Γ =
∑

i

u2
∗,i

(
A

B

)i

. (F6)

Solving the discrete model thus requires, in general, the
solution of a nonlinear difference equation. Alternatively,
one may look at the logarithm of c and solve a continuous
equation, as it is done in the WKB method.

APPENDIX G: EVOLUTION OF LARGE
POPULATIONS WITH CONSTANT FITNESS

In contrast to the adapting populations considered pre-
viously, we are now considering populations that have al-
ready “found” a (local) peak in the fitness landscape. We
ask how one can describe the distribution growth rates in
this quasi-steady state. In other words, we develop the
basic frame work to calculate allele frequency distribu-
tions for large populations, in which the mean fitness is
stationary.

For x =const., the selection function u∗(x) satisfies

−∂tu∗ =
(
L†evo − x0 − 2u∗

)
u∗ = 0 (G1)

at stationarity. Since u∗(x) has the interpretation of sur-
vival probabilities (Sec. C), it should be intuitively clear
that u∗(x) should uniformly go to 0 as the population
size is send to infinity. Thus, the mean fitness x∞0 in an
infinite population can be found by neglecting the non-
linearity, (

L†evo − x∞0
)
u∗ = 0 . (G2)

We would like to remark that this equation has no solu-
tion for the model Eq. 7 of continually adapting popula-
tions (main text). In this case, the perturbation brought
about by the fluctuations of a finite population was a sin-
gular perturbation. When the population is at a fitness
peak, however, Eq. (G2) has a solution, and one may
carry out a basic perturbation analysis to investigate the
leading order effects of sampling noise. To this end, let
us define

L∞ = Levo − x∞0 (G3)
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and study a population with slightly smaller mean fitness
x0 = x∞0 − δ (δ � 1) than the mean fitness of an infinite
one. In this case, we may expand

u∗ = δ
∑

n

anfn (G4)

where fn is the nth left eigenvector of the unperturbed
L∞

L†∞fL
n = λnfL

n . (G5)

Suppose, we have ordered the eigenvalues according to
their magnitude. Then λ0 = 0 by virtue of Eq. (G3).
Performing the inner product of fL

n and

0 = (L†∞ − ε− u∗)u (G6)

shows that to leading order in ε,

an>0 = 0 (G7)

a0 =
ε

2
〈f0 | f2

0 〉−1 . (G8)

To leading order, we thus have

u∗ =
εf0

2〈f0 | f2
0 〉

. (G9)

The mean population density c = b0f
R
0 will accordingly

be proportional to the right eigenvector fR
0 of L∞ corre-

sponding to eigenvalue 0. The pre-factor b0 follows from
the constraint, which reads

1 = 〈u | c〉 = εb0
〈fL

0 | fR
0 〉

2〈fL
0 | (fL

0 )2〉
. (G10)

Therefore,

c =
2〈fL

0 | (fL
0 )2〉

ε〈fL
0 | fR

0 〉
fR
0 (G11)

The mean total population size is given by

N =
2〈1 | fR

0 〉〈fL
0 | (fL

0 )2〉
ε〈fL

0 | fR
0 〉

. (G12)
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