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SI Discussion
1 Analytical Model of Diffusion. Here we seek approximate, analy-
tical relationships for transient diffusion in the extravascular
space surrounding the blood vessels. This is a particular case of
diffusive transport through a homogeneous solid near an irregu-
lar boundary. The surface irregularities of interest here are suffi-
ciently large that diffusion may be regarded as a macroscopic
process. Our immediate interest is diffusion into blood vessels
from the extravascular space, but the resulting approximation
works well on a wide variety of geometries and may have other
physical applications. Our present approach differs from that in
the literature used to address problems of steady-state diffusion
near an irregular surface (1) and also from situations in which
anomalous diffusion may arise. Here we have diffusion through
a compact, homogeneous substrate that has an irregular bound-
ary, whereas anomalous diffusion results from heterogeneity in
the underlying substrate (2).

We aim to approximate the full 3D problem with a 1D form of
the transient diffusion equation that accounts for variation in
the number of voxels nðδÞ at a given distance δ from the vascular
surface. This is a generalized formulation that reduces to the
well-known forms appropriate for planar, cylindrical or spherical
coordinates in special cases, but can also accommodate other
forms of nðδÞ. We focus in particular on the power-law form
nðδÞ ¼ n1ðδ∕lÞλ where l is the width of a voxel that can be fit,
at least locally, to the actual variation obtained from images
or various artificial geometries. Ultimately, we obtain a similarity
solution for the rate of mass diffusion from the extravascular
space into the blood vessels that can be used to evaluate several
parameters of pharmacokinetic significance. Numerical simula-
tions of various 2D and 3D geometries in Numerical Solutions
for Specific Geometries demonstrate the validity of the analytical
results that follow.

We begin by considering the general case of 3D transient dif-
fusion in an extravascular space of arbitrary shape governed by

Dm∇2Cð r⇀;tÞ − Rð r⇀;tÞ ¼ ∂Cð r⇀;tÞ
∂t

; [S1]

where Cð r⇀;tÞ is the concentration as a function of position and
time and Rð r⇀;tÞ is the rate of elimination by metabolism or bind-
ing. Here we will consider only nonreactive tracers (Rð r⇀;tÞ ¼ 0).
Points on the blood vessel walls r⇀v form the boundary of the ex-
travascular space. We assume that the concentration throughout
the blood vessels is established on a shorter time scale than that
pertaining to the diffusion process so that the concentration on
the vessel walls may vary with time as CvðtÞ but is uniform with
respect to position, that is Cðr⇀v;tÞ ¼ CvðtÞ. Whereas this assump-
tion will not be strictly valid for highly diffusive molecules that
may exhibit some flow-limited behavior, it is useful as a tool
for examining the diffusive behavior of drugs or other tracers that
take longer to diffuse from the vessels. We also recognize that the
vessel wall might have a finite permeability, but our numerical
simulations showed that the scaling behavior we report here dif-
fers only modestly from that obtained by using a uniform, effec-
tive diffusivity throughout the extravascular tissue. We further
assume that the concentration is initially uniform throughout
the extravacular tissue at Cð r⇀;0Þ ¼ Ci.

Solutions for the preceding problem can be constructed from
solutions of the following auxiliary problem

Dm∇2Φð r⇀;tÞ ¼ ∂Φð r⇀;tÞ
∂t

; [S2]

subject to the boundary condition Φðr⇀v;tÞ ¼ 1 and the initial con-
dition Φð r⇀;0Þ ¼ 0 using Duhamel’s theorem as follows (3)

Cð r⇀;tÞ ¼ Ci þ
Z

t

τ¼0

CvðtÞ
∂Φð r⇀;t − τÞ

∂t
dτ: [S3]

Because solutions of the full three-dimensional problem cannot
be developed without complete knowledge of the vascular geo-
metry, we seek a quasi one-dimensional simplification that relies
only on the statistics of how many voxels nðδÞ lie at a given dis-
tance δ from the nearest point on the vessel wall. Performing a
mass balance on a differential shell of tissue at a distance δ with
thickness dδ we obtain

Dm

�
∂2Cðδ;tÞ

∂δ2
þ 1

nðδÞ
dnðδÞ
dδ

∂Cðδ;tÞ
∂δ

�
¼ ∂Cðδ;tÞ

∂t
; [S4]

subject to the boundary conditions Cð0;tÞ ¼ CvðtÞ and Cð∞;tÞ ¼ 0
with the initial condition Cðδ;0Þ ¼ 0. We note that Eq. S4 readily
reduces to the familiar 1D forms of the diffusion equation for
planar (n ∼ δ0), cylindrical (n ∼ δ1) and spherical (n ∼ δ2) coordi-
nate systems.

The corresponding auxiliary problem is governed by

Dm

�
∂2Φðδ;tÞ

∂δ2
þ 1

nðδÞ
dnðδÞ
dδ

∂Φðδ;tÞ
∂δ

�
¼ ∂Φðδ;tÞ

∂t
[S5]

with boundary conditions Φð0;tÞ ¼ 1 and Φð∞;tÞ ¼ 0 with the
initial condition Φðδ;0Þ ¼ 0 where Duhamel’s theorem yields the
concentration for more general boundary conditions at the vessel
walls as follows

Cðδ;tÞ ¼
Z

t

τ¼0

CvðτÞ
∂Φðδ;t − τÞ

∂t
dτ: [S6]

We seek solutions of Eq. S5 that reflect the following power-law
variation nðδÞ ¼ n1ðδ∕lÞλ where l is the width of a voxel. Introdu-
cing the similarity variable η ¼ δ∕ðDmtÞ1∕2 reduces Eq. S5 to the
following ordinary differential equation

d2ΦðηÞ
dη2

þ
�
λ

η
þ η

2

�
dΦðηÞ
dη

¼ 0; [S7]

which can be separated and integrated twice. Applying the
boundary conditions, Φð0Þ ¼ 1 and Φð∞Þ ¼ 0 to determine the
constants of integration gives

ΦðηÞ ¼ Γð1−λ
2
; η

2

4
Þ

Γð1−λ
2
Þ [S8]

for λ < 1 where Γða;zÞ and ΓðzÞ are the incomplete gamma func-
tion and complete gamma function, respectively. Values of ΦðηÞ
are shown in Fig. S1 for representative values of λ. The solution
given by Eq. S8 reduces to the familiar error function result for
planar geometry, that is λ ¼ 0 yields ΦðηÞ ¼ erf cðη∕2Þ.

Several elementary approximations of pharmacological impor-
tance can be readily obtained from Eq. S8. For example, the time
that must transpire after a sudden increase (or decrease) in the
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vascular concentration in order for the concentration at a given
distance from the nearest vessel to reach one half of the change in
the vessels is given by 1∕2 ¼ Φðη1∕2Þ. In the planar case we find
that η1∕2 ¼ δ∕ðDmt1∕2Þ1∕2 ¼ 0.954, whereas concave geometries
(λ < 0) yield shorter times and convex geometries (λ > 0) take
somewhat longer as can be seen in Fig. S1. Of further interest
is the possibility that the tracer is present in the blood for a very
short time relative to the duration of the diffusion processes.
Here we may approximate the vascular concentration as an
impulse in time yielding

Cðδ;tÞ≅AUCv
∂Φðδ;tÞ

∂t
; [S9]

where the area under the curve (AUCv) for the concentration in
the vessels is defined as

AUCv ≡
Z

∞

τ¼0

CvðτÞdτ: [S10]

It is readily shown that the area under the curve in the vessels is
identical to that in the extravascular space, but that the peak con-
centration Cmax is greatly reduced as the distance from the vessel
increases. Moreover, the time at which the concentration reaches
its peak value tmax is much later as the distance from the vessel
increases. For very short residence of the tracer in the vessels we
obtain, respectively

Cmax≅AUCv
4Dm expð−ð3−λ

2
ÞÞ

Γðλ−1
2
Þð3−λ

2
Þ3−λ2 δ2 [S11]

and

tmax≅
δ2

2ð3 − λÞDm
: [S12]

Eq. S11 does not imply that the concentration is unbounded at
the vessel walls. Instead, Eq. S11 indicates a relative scaling with
distance following a mathematically idealized impulse injection—
infinite in magnitude and infinitesimal in duration. For convex
and concave geometries the coefficients in Eqs. S11 and S12
differ slightly from the values obtained for planar geometry,
but the essential dependences on distance (Cmax ∼Dm∕δ2 and
tmax ∼ δ2∕Dm) remain unchanged. As a result, we predict that
pharmacological effects expected in normal tissue will be greatly
delayed and reduced in magnitude for cells abnormally distant
from the nearest vessel.

The case corresponding to the random walk simulations pre-
sented in the main paper is readily obtained from the preceding
analysis. The initial concentration throughout the extravascular
space is uniformly Ci whereas the concentration on the vessel
walls is held to zero. Here the solution is

Cðδ;tÞ
Ci

¼ 1 −ΦðηÞ ¼ 1 −
Γð1−λ

2
; η

2

4
Þ

Γð1−λ
2
Þ : [S13]

The total rate of mass transfer into the vessels, which is propor-
tional to the rate at which random walkers are absorbed on the
vessel walls, can now be found by evaluating Fick’s law at the ves-
sel wall (in the limit as δ → 0) as follows

JðtÞ ¼ DmS
dC
dδ

����
δ¼0

¼ Cin1l2−λ2λD
λþ1
2
m t

λ−1
2

Γð1−λ
2
Þ ∼ t−α; [S14]

where S is the surface area through which diffusion takes place,
that is S ¼ nðδÞl2. By inspection, we obtain α ¼ ð1 − λÞ∕2, the
formula presented in the main paper. We recognize that the flux
in Eq. S14 is mathematically unbounded for short times in the
well-known, classical result (λ ¼ 0) as well as for our new, more
general case (λ ≠ 0). Physically, this presents no difficulty because

the boundary condition representing an instantaneous change in
vascular concentration can only be approximated by changes that
will actually require a finite, albeit brief, time interval.

The scaling of the residence time for the tracer (impulse re-
sponse from a bolus injection similar to the clearance experi-
ments presented in the main paper Fig. 2) can be obtained by
differentiating the preceding step response with respect to time,
yielding

hðtÞ ¼ dJðtÞ
dt

∼ t−ð3−λÞ∕2 ¼ t−α−1; [S15]

where the present result exactly satisfies the classical result for a
planar geometry (λ ¼ 0 implies α ¼ 1∕2). The exponents on time
as predicted by Eqs. S14 (step response) and S15 (impulse re-
sponse) differ by one, consistent with how the exponents in
the random walk simulations on tumors in the main paper
(JðtÞ ∼ t−0.73 for the example in Fig. 3) differ by about one from
those seen in the clearance experiments (hD2OðtÞ ∼ t−1.67 for the
example in Fig. 2).

The preceding analysis is strictly valid only when nðδÞ ∼ δλ is
satisfied for all δ > 0, but we note that neither nðδÞ nor JðtÞ
are perfect power laws throughout their respective domains.
More typically, we see that nðδÞ and JðtÞ only approximate power
laws over finite intervals. To investigate their local behavior we
consider d log nðδÞ

d log δ , which is the local value of λ and d log JðtÞ
d log t , which

is the local value of −α. Simulations using a wide variety of
geometries provided later in Numerical Simulations for Specific
Geometries demonstrate that gradual changes in λ with respect
to distance are reflected in corresponding changes in α. Specifi-
cally, simulations show that αðtÞ≅ð1 − λðδÞÞ∕2 where t ¼ δ2∕Dm.
The simulations presented later show that this approximation
is sufficiently robust to allow αðtÞ to track changes in λðδÞ that
occur over a fraction of a decade.

The preceding analysis assumes that the tissue space is semi-
infinite. Clearly, nðδÞ ∼ δ−λ cannot persist beyond δmax, the great-
est distance to the nearest vessels (the radius of the largest
avascular space). In practice, the spatial scaling may begin to
breakdown at slightly shorter distances.

Next, we consider the slowest part of the transient that occurs
as diffusion into or out of the largest avascular space occurs.
Again assuming one-dimensional diffusion, we can express the
concentration in the largest avascular space as a sum of eigen-
functions such that

Cðδ;tÞ ¼ ∑
∞

i¼1

AiFðβi;δÞe−Dmβ
2
i t; [S16]

where βis are the eigenvalues of the eigenfunctions Fðβi;δÞ that
satisfy the boundary conditions on the vessel walls. The concen-
tration and fluxes on the surfaces depend on only the slowest de-
caying eigenfunction for long times. Thus, JðtÞ ∼ hðtÞ ∼ e−Dmβ

2
1
t

yielding the following expression for the time constant
tc ¼ 1∕Dmβ

2
1 where β1 is the first eigenvalue. In simple cases,

the eigenvalue can be found analytically. For more complex geo-
metries tc can be estimated from curve-fitting numerical solutions
to an exponential function at long times.

The preceding results may be used to more closely examine
how flow heterogeneity and extravascular diffusion interact.
We interpret the result that intravascular tracer clears more gra-
dually from tumor (t−2.29�0.20) than a diffusive tracer in a healthy
tissue (t−3.1) as evidence of significant flow heterogeneity in the
tumors. This raises the question of how flow heterogeneity affects
clearance from tumors when extravascular diffusion is present.

To address this question we explore the situation in which the
vascular concentration does not approximate a mathematically
ideal impulse as previously assumed, but is spread over a longer
time interval that might be better approximated by CvðtÞ ¼

Baish et al. www.pnas.org/cgi/doi/10.1073/pnas.1018154108 2 of 10

http://www.pnas.org/cgi/doi/10.1073/pnas.1018154108


C1Hðt − TÞt−β where C1 is a constant, Hðt − TÞ is a unit step in
time that includes a transportation delay of duration T and β
is the exponent that best fits the decay of the intravascular tracer
concentration. Such a representation of the vascular concentra-
tion obscures details over short times, but retains the longer dura-
tion power-law behavior that we observed in our experiments
where β ¼ 2.29� 0.20 (Fig. 2). We further assume that the pulse
response for diffusive transport is given by t−α−1e−t∕tc , which in-
cludes an interval of power-law decay followed by a more rapid
exponential decay that occurs as the largest avascular space equi-
librates with the vasculature. The clearance for a diffusive tracer
CoutðtÞ may then be approximated as

CoutðtÞ ¼
Z

t

τ¼0

C1Hðt − TÞt−βðt − τÞ−α−1e−ðt−τÞ∕tc dτ: [S17]

Fig. S2 illustrates how the slowest process in a given time interval
dominates, that is, the clearance curve will depend on diffusion-
only CoutðtÞ ∼ t−α−1e−t∕tc if β > αþ 1 and t < tc, otherwise it will
track the vascular concentration as CoutðtÞ ∼ t−β when flow effects
evolve more slowly. For the entire duration of our isolated tumor
experiments, we found that β > αþ 1 (2.29� 0.20 > 1.73� 0.09)
consistent with diffusion dominated transport lasting at least sev-
eral hundred seconds as we observed. In contrast, the clearance
reported for a highly diffusive tracer from a normal myocardium
was very rapid t−3.1 (4) indicating that diffusion effects, if present,
were of short duration compared to flow effects. The capillary
density of the normal myocardium is quite high and relatively
uniform, yielding small δmax and tc < 0.1 s for small molecules,
thus placing nearly the entire clearance process in the convection
dominated interval. We recognize that spatial heterogeneity in
the vascular concentration can make the combined effects of
flow and diffusion somewhat more complex than represented
by Eq. S17 for short times. Nonetheless, this approximate analysis
helps to clarify how diffusive effects due to large unperfused
regions can dominate the effects of flow patterns within the net-
work of perfused vessels even when the arrival of tracer is delayed
due to significant flow heterogeneity throughout the vascular net-
work. The effects of flow heterogeneity on the clearance rates are
further explored in Numerical Simulations for Specific Geometries
where we present numerical simulations of fully coupled convec-
tion and diffusion in percolation networks that resemble tumor
vasculature.

2 Numerical Simulations for Specific Geometries. The simulations
summarized in Figs. S3 and S4 and Tables S1 and S2 show the
degree to which idealized geometries and vascular images satisfy
the preceding predictions. Diffusion calculations on the vascular
images were performed by random walk methods, whereas those
on idealized geometries were performed by finite-difference
solutions of the transient diffusion equations. Finite-difference
solutions were performed in Matlab using standard central differ-
encing in space and either explicit or implicit marching in time.
The various explicit and implicit integration schemes in time
show modest differences in absolute accuracy, but have insignif-
icant effects on the transport exponents. The external tissue
boundaries are all taken to satisfy no flux conditions. We note
that the finite-difference techniques employed here are close kin
to the exact-enumeration methods often applied in the random
walk approach to transport problems (2).

The most challenging test on each geometry is whether the
local trends are tracked, that is, the extent to which αðtÞ ¼
ð1 − λðδÞÞ∕2 where t ¼ δ2∕Dm. Each plot in Figs. S3 and S4
presents results of a numerical calculation of the rate at which
a diffusible substance is transferred to the blood from the extra-
vascular space when the concentration is initially uniform every-
where, but is suddenly reduced to zero in the blood vessels by
rapid convective clearance. Each plot shows the local slope of
logðtÞ vs. logðJðtÞÞ, which is −αðtÞ along with the values predicted

from the local slope of logðδÞ vs. logðnðδÞÞ that is −ð1 − λðδÞÞ∕2.
The results from finite-difference methods are relatively smooth,
whereas the results from the random walks had to be averaged
over short intervals to estimate the rates of change.

The range over which αðtÞ remains relatively constant indicates
the power-law range. When αðtÞ undergoes a rapid drop at long
times, transition to exponential behavior has begun. Experience
from simulations has shown that the best linear fit of logðδÞ vs.
logðnðδÞÞ over the interval δ ≤ δmax∕3 gives a reasonable value of
λ to represent the power-law interval. The transition to exponen-
tial behavior begins in earnest beyond this point. Deviations be-
tween prediction and diffusion simulation at long times result
from modest differences in the eigenvalues specific to each geo-
metry. (See the estimates of tcDm∕δ2max in Table S1.) Deviations in
αðtÞ from a constant value arise from the characteristics of the
geometry. Typically, we find that αðtÞ varies somewhat more
gradually than predicted from nðδÞ, but that local trends lasting
longer than about 1∕2 decade in time and 1∕4 decade in length
are faithfully reflected. See in particular the local variations pre-
sent for a 6-generation Sierpinski carpet shown in Fig. S4. Our
simulations demonstrate, that while the preceding derivation is
approximate for all but the simplest planar case, it is highly robust
in its ability to model a wide range of complex geometries in
2D and 3D. Imprecision introduced by the 1D approximation
falls well within the range of geometric variability observed in vivo
(Fig. 5C and Figs. S3 and S4).

Parallel Planes. Transient diffusion can be calculated exactly for
arrays of parallel planes separated by the distance 2δmax. For
short times, the space between the planes will act as a half space
such that JðtÞ ¼ SCoðDm∕πÞ1∕2t−1∕2, that is α ¼ 1∕2. As concen-
tration changes approach the midpoint between the planes, the
solution is better represented by the slowest decaying eigenfunc-
tion, that is JðtÞ ∼ e−t∕tc where tcDm∕δ2max ¼ 4∕π2. Avascular
spaces in the forms of square prisms and cubes also yield exact
results tcDm∕δ2max ¼ 2∕π2 and tcDm∕δ2max ¼ 4∕3π2, respectively.
Note that the time constant found numerically from the square
holes in the Sierpinski carpet (tcDm∕δ2max ¼ 0.204) matches the
prediction of tcDm∕δ2max ¼ 2∕π2 within 0.5%.

Krogh Cylinder Model. The Krogh cylinder model was based on a
regular array of parallel cylinders of radius Ro that represent the
tissue in the vicinity of each vessel of radius Ri (5). The outer
surface of the Krogh cylinder at δmax ¼ Ro − Ri is a boundary
of symmetry between adjacent vessels. An exact analytical solu-
tion for transient diffusion can be obtained for the space between
the vessel wall and the outer boundary of symmetry. Numerical
solutions are also readily obtained. Whereas we do not expect
that nðδÞ ∼ δλ will hold exactly over any specific range of δ, we
do find that local variations in αðtÞ ¼ d log JðtÞ∕d log t are well
predicted by αðtÞ ¼ ð1 − λðδÞÞ∕2 from local changes in λðδÞ ¼
d log nðδÞ∕d log δ. In the immediate vicinity of a cylindrical
surface we have nðδÞ ∼ δ0 followed by a gradual transition to
nðδÞ ∼ δ1 as the distance from the surface increases to many radii.
The exact expression for this geometry is λðδÞ ¼ δ∕ðδþ RiÞ.
Beyond the boundary of symmetry, nðδÞ drops precipitously to
zero. Accordingly, we expect that αðtÞ will vary so that hðtÞ ∼
t−3∕2 and JðtÞ ∼ t−1∕2 for short times, then tending toward hðtÞ ∼
t−1 and JðtÞ ∼ t0 followed by a rapid cross over to hðtÞ ∼ e−t∕tc and
JðtÞ ∼ e−t∕tc as the outer boundary comes into play. The time con-
stant can be found from an exact solution of the boundary value
problem such that tc ¼ 1∕Dmβ

2
1 where β1 is the first root of

J1ðβ1R0ÞY 0ðβ1RiÞ − J0ðβ1RiÞY 1ðβ1R0Þ ¼ 0 where J0, J1, Y 0, and
Y 1 are Bessel’s functions. For Ro∕Ri ¼ 5 we find that β1Ri ¼
0.2824 and tcDm∕δ2max ¼ 0.7831, closely matching the numerical
result from a finite-difference calculation with Ri ¼ 40 and Ro ¼
200 (Table S1).

Baish et al. www.pnas.org/cgi/doi/10.1073/pnas.1018154108 3 of 10

http://www.pnas.org/cgi/doi/10.1073/pnas.1018154108


Numerical results for a cylinder in a box are also presented in
Table S1. This geometry corresponds to a regular array of cylin-
ders on square centers. Because of the symmetries in this geome-
try, only the vicinity of one cylinder need be considered. The box
side (L) equals the center-to-center spacing of the cylinders. The
cylinder in a box contains a few points in the corners of the boxes
that make this geometry differ slightly from the traditional Krogh
cylinder.

We note that the diameter of the vessel relative to the spacing
of the vessels has a small impact on λ (Table S1). Relatively small
vessels lead to slightly larger values of λ if the vessel spacing is
held constant. Given that tumor vessels are generally somewhat
larger than normal capillaries, we would expect that λ will be
slightly smaller in tumors than in normal tissues if the vessel-to-
vessel distances are similar. This effect can be seen in the results
from the cranial window (Fig. 5C) in which the tumor vessels are
larger than the normal vessels, but not significantly more widely
spaced.

Spherical Hole. The simplest representation of a no-flow region
in 3-D is a spherical hole in the vasculature. For a hole of radius
Ro we find nðδÞ ∼ ðRo − δÞ2. For small values of δ, the inner
surface of the hole behaves as a planar surface yielding
nðδÞ ∼ δ0, λ ¼ 0 and α ¼ 1∕2. As the distance from the surface
increases, nðδÞ drops more and more rapidly as the center of
the sphere is approached. There is no interval over which λ is
truly constant, but a best fit obtained over the arbitrary interval
δ ≤ δmax∕3 gives λ≅ − 0.28 and a prediction that α≅0.64. The
eigenvalue for a spherical hole is readily found analytically, yield-
ing tcDm∕δ2max ¼ 1∕π2≅0.101.

Fractal and Quasifractal Structures. Just as a regular array of perfect
cylinders is a useful, but limited, model of a healthy capillary
bed, we expect that fractals and percolation clusters in particular
may serve as useful, but limited, models of the more random ar-
chitecture found in tumors. True fractals display scale-invariance
over an infinite range. At best, blood vessels can be described as
quasi-fractals, which are scale invariant in an approximate sense
over a finite interval. Previous studies of 2D images found that
tumor vasculature displayed scale-invariance (6–10) from roughly
50 μm to 5 mm with fractal dimensions matching those of 2D
percolation clusters at the critical threshold indicating that the
number and size of avascular regions in tumors was well modeled
by percolation. In addition, the fractal dimension of the shortest
vascular pathways in tumors was elevated similar to that in per-
colation implying that tumor vasculature was tortuous across
many length scales. In contrast, normal vasculature was found
to be more homogeneously distributed throughout the tissue
with relatively straight minimum paths. Here we demonstrate
the utility of the present model on finite-sized realizations of per-
colation clusters in 2D and 3D as well as iterated structures such
as the Sierpinski carpet and Koch curve.

We created percolation networks on a square lattice at the
critical threshold by several algorithms. One approach is invasion
percolation. Here we begin at a site on one side of the lattice.
Fictitious “strengths” are randomly assigned to each site on the
lattice. Expansion of the network then proceeds by invading
the weakest site neighboring the existing network. Growth is
terminated when the opposite side of the lattice is reached. Alter-
natively, a cluster with similar scaling characteristics can be
generated by randomly selecting a subset of sites on the lattice.
At the critical threshold, the fraction of sites selected is sufficient
to create a connected cluster that spans the available domain.
Smaller, disconnected clusters are deleted.

An approximate relationship between the fractal dimension
and λ can be found by considering the box-counting method
for determining the fractal dimension. The number of D-dimen-
sional boxes of side S needed to cover a surface with fractal

dimension Df scales as Nbox ∼ S−Df . The fraction of each box at
a distance δ from the surface scales as δD−1. Therefore the overall
fraction of the space at a distance δ scales as nðδÞ ∼ δD−1Nbox
yielding nðδÞ ∼ δD−1Nbox ∼ δ−DfþD−1. Thus we find λ ¼ D−
Df − 1. Simulations on finite-sized objects such as the Sierpinski
carpet, Koch curve and percolation clusters in 2D and 3D confirm
that nðδÞ ∼ δλ holds over a wide range of length scales. In Table S2
we compare values of λ found directly from the best fit of
nðδÞ ∼ δλ over the range δ ≤ δmax∕3 to estimates made from
the best fit of Nbox ∼ S−Df over the range (S ≤ 2δmax∕3)—noting
that a box of side S ¼ 2δ can fit into an avascular region with a
maximum distance to a vessel of δ. We note that such estimates of
the box dimension are simply curve fits and do not imply strong
scale-invariance. We find that estimates of λ obtained from
λ ¼ D −Df − 1 follow the general trends seen in estimates of λ
found directly from curve-fitting nðδÞ ∼ δλ, but predict α less well
(Table S2).

Percolation in 3D is of particular interest because of its poten-
tial to serve as model for tumor vasculature. The 3D percolation
clusters used in our numerical simulations were embedded in a
relatively small domain (64 × 64 × 64) and yielded estimates of
λ ¼ −0.34� 0.05. Studies of much larger clusters have found
that Df≅2.54 (2) from which we estimate λ ¼ D −Df−
1≅3 − 2.54 − 1 ¼ −0.54. The corresponding estimate for the time
exponent α≅0.77 is slightly higher than found from diffusion si-
mulations on finite-sized 3D percolation clusters α ¼ 0.65� 0.02
and random walks on images of small tumors (Table S1). For
comparison we found that α ¼ 0.73� 0.09 from the residence
time experiments (Fig. 2) on somewhat larger tumors (about
1 mL). The time constant for the avascular space surrounding
3D percolation clusters is not available analytically, but our simu-
lations yield tcDm∕δ2max ¼ 0.253� 0.016.

To examine the combined effects of convection and diffusion
in the presence of significant flow heterogeneity we created 2D
percolation clusters on a 32 × 32 square lattice at the critical
threshold by the invasion percolation algorithm (Fig. S5A). A net-
work of blood vessels was then created by connecting neighboring
sites on the percolation cluster with blood-filled tubes of uniform
diameter. Flow was established in the network by introducing a
pressure gradient across the network as a whole. We calculated
the flow in each segment by solving the system of flow equations
subject to conservation of mass at each vessel junction. The re-
sulting networks have a relatively sparse backbone on which flow
occurs, but demonstrate highly heterogeneous flow, even under
the simplifying assumption of uniform vessel diameters. We note
the presence of several low-resistance pathways with high blood
speeds that serve effectively as arteriovenous shunts as well as a
multitude of secondary, tortuous pathways that carry much slower
flow. The causes and consequences of such heterogeneity and
shunting are the subject of much current interest (11).

We then solved the full transient convection-diffusion equa-
tions for the concentration by standard finite-difference techni-
ques (central differencing for diffusion, upwind differencing
for convection, either explicit or implicit marching in time) with
diffusion occurring throughout the entire domain and convection
occurring only along the vascular pathways. The tissue bound-
aries at the edges of the domain were taken to satisfy no flux
conditions except where blood enters or leaves the domain. Spe-
cifically, we considered the situation in which the concentration is
initially uniform throughout the tumor but the concentration in
the incoming blood is suddenly reduced. (By changing signs, the
same model can be used for delivery at a constant infusion con-
centration). Fig. S5 B–E shows how simultaneous convection and
diffusion affect the clearance of the tracer. In general, the slowest
process (either convection or diffusion) dominates the response
during each interval. Convection dominates at short times
(tDm∕l2 < 1) in Fig. S5 B and C where the diffusivity is relatively
low—analogous to the intravascular tracer in the isolated tumor

Baish et al. www.pnas.org/cgi/doi/10.1073/pnas.1018154108 4 of 10

http://www.pnas.org/cgi/doi/10.1073/pnas.1018154108


experiments (Fig. 2). The outlet concentration initially follows
the convection-only curve that is much steeper (larger value of
α) than the diffusion-only curve. When the diffusivity is increased
in Fig. S5 D and E we see that the geometrical details of the flow
network are obscured by the effects of diffusion in the extra-
vascular space—analogous to the clearance of D2O from the
isolated tumors. We note that the ratio of the diffusivity of
D2O relative that of the intravascular tracers is actually far great-
er than the 20∶1 ratio shown here, so we did not observe diffusive
effects during the clearance of the intravascular tracers in the
experiments reported in Fig. 2. The time constant based on diffu-
sion into the largest extravascular space (tc ∼ δ2max∕Dm) is shown
on Fig. S5 B–E to indicate when the effects of extravascular diffu-
sion begin to make the transition from power-law to exponential
behavior. For times beyond tc ∼ δ2max∕Dm, the clearance will re-
turn to convection dominance as we observed earlier in Fig. S2
and as has been observed in the normal myocardium where the
time constant is extremely short due to the close spacing of the
vessels in the normal myocardium.

We now see that clearance can be convection dominated in
two distinct regimes: a low-diffusivity, intravascular tracer at high
flow rates or alternatively with a highly diffusive tracer in a homo-
geneous network with closely spaced vessels. Neither situation
applies to diffusive tracers in tumors with large extravascular
spaces where the effects of flow heterogeneity are not generally
observable.

Vascular Images. The diffusion simulations performed on 3D vas-
cular images display various elements of the artificial geometries
considered above. Incorporating the voxel size of the original
images (Table S3) allows us to plot the random walks on a phy-
sical time scale. At very short times, both normal and tumor
tissues show intervals of power-law behavior with slopes near
the classical diffusion result α ¼ 1∕2. Normal tissues briefly exhi-
bit α < 1∕2 indicating a convex extravascular space similar to that
in a Krogh cylinder or regular array of cylinders. The slope of the
clearance rate for tumors differs only slightly in this interval. The
most pronounced difference between normal and tumor tissues is
that the power-law interval lasts longer in tumors that have rela-
tively large avascular spaces. As approximate power-law behavior
persists in these tumors we find α > 1∕2 corresponding to a
concave extravascular geometry such as a spherical hole or the
vicinity of a percolation cluster. We note that α > 1∕2 indicates
more rapid clearance than α < 1∕2, but still slower than exponen-
tial decay. Prolonging the power-law interval increases the time
constant accordingly. That is, the minimum time required to
change the concentration at the most distant points from the
vessels increases dramatically with δmax.

For small molecules (Dm≅10−5 cm2∕s) we find that the actual
duration of power-law behavior due to diffusion is quite short in
normal tissues (less than 1 s)making it indistinguishable from con-
vection along the vascular pathways that takes somewhat longer.
Much longer power-law intervals are anticipated for larger tumors

(δmax > 1 mm) or for macromolecules (Dm≅10−7 cm2∕s). The
shape of the extravasular space has a modest effect on the time
constant. The vascular images yielded tcDm∕δ2max ¼ 0.43� 0.01,
independent of the tissue type, which falls between the value
for a Krogh cylinder and 3D percolation clusters, but well above
the value for a spherical hole.

Overall, 3D percolation offers the most complete model of
tumor vasculature by capturing the random appearance and
variability of the tumor vasculature, the dispersive effects on
convective transport, and the scaling features of extravascular dif-
fusion. A spherical hole may also be of some utility as a simple
geometrical model if only extravascular diffusion is of interest,
but we note that the time constant is less well modeled.

The physical size of a lattice constant l deserves some discus-
sion. In percolation theory, the lattice constant is the natural
lower limit to the length scales over which self-similarity might
be observed. In our previous study (8) we found that tumor vas-
culature exhibited approximate self-similarity down to a length
scale of about 50 μm—roughly the mean distance between adja-
cent blood vessels. Below this scale, any attempt to apply methods
such as box-counting will reveal features about the immediate
vicinity of individual vessels, but not the scaling of the major avas-
cular voids. Thus, we propose that the physical size of a lattice
constant in a percolation model of tumor vasculature is nominally
50 μm. Using this approximation, we find that a percolation
cluster in a 64 × 64 × 64 domain would correspond to a 3-mm
diameter tumor.

Images with finer resolution than 50 μm can be useful for
studying the tortuosity and connectivity of the vascular network,
but are likely to reveal little of interest with respect to the most
relevant avascular spaces in tumors provided that they do not
miss the existence of fine scale vessels. We note that the most
important avascular spaces are the largest ones—thus making
low resolution images of the entire tumor more useful than high
resolution images of small segments of the tumor.

SI Materials and Methods
To test the validity of our methodology to a spectrum of normal
and tumor vascular geometries, we used different transparent
window models: the dorsal skinfold chamber, mammary fat
pad, and cranial window (12, 13). We collected images of normal
tissue from all three window models (N ¼ 4 for dorsal skin cham-
ber, N ¼ 5 for mammary fat pad and N ¼ 19 for cranial window).
Additionally, we used two tumor cell lines: We implanted the
murine mammary carcinoma MCaIV in a dorsal skinfold cham-
ber (N ¼ 11) and a mammary fat pad (N ¼ 4) in severe combined
immunodeficient mice and the human glioblastoma U87 in a cra-
nial window in nude mice (N ¼ 52). High resolution 3D images
were collected using either Doppler optical frequency domain
(14) or multiphoton imaging (15, 16). The imaging method that
was used for each tissue type along with the voxel size of the
images is shown in Table S3. The images typically measured
(600 × 600 × 150 voxels).
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Fig. S3. Simulations of extravascular diffusion on various artificial geometries by finite-difference solution of the diffusion equation. Predictions of local slope
are based on counted numbers of voxels at a given distance using αðtÞ ¼ ð1 − λðδÞÞ∕2.
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Fig. S4. Simulations of extravascular diffusion on various artificial geometries by finite-difference solution of the diffusion equation. Predictions of local slope
are based on counted numbers of voxels at a given distance using αðtÞ ¼ ð1 − λðδÞÞ∕2. One typical example is shown for percolation in 2 and 3 dimensions.
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Table S1. Relationship of geometric measures to time scaling

Structure

Convexity index
calculated from

distance statistics λ

Time exponent predicted
from distance

statistics ð1 − λÞ∕2

Time exponent
from diffusion
simulation α

Largest
distance to
a vessel δmax

Time constant
from simulation

tcDm∕δ2max

Parallel planes 0.00 0.50 0.50 50 0.405
Cylinder in box (Ri ¼ 40 L ¼ 400) 0.31 0.35 0.38 242 0.490
Cylinder in box (Ri ¼ 20 L ¼ 400) 0.46 0.27 0.32 262 0.659
Cylinder in cylinder (Ri ¼ 40 Ro ¼ 200) 0.24 0.38 0.40 160 0.789
Cylinder in cylinder (Ri ¼ 20 Ro ¼ 200) 0.40 0.30 0.35 180 1.021
Spherical hole (Ro ¼ 40) −0.28 0.64 0.66 40 0.099
Koch curve (6 generations) −0.28 0.64 0.65 158 0.190
Sierpinski carpet (6 generations) −1.15 1.08 1.07 122 0.204
Menger sponge (4 generations) −1.40 1.20 1.11 18 0.199
2D percolation(200 × 200 N ¼ 10) −0.97 ±0.09 0.98 ±0.04 0.96 ±0.04 80 ±10 0.260 ±0.017
3D percolation (64 × 64 × 64 N ¼ 10) −0.34 ±0.05 0.67 ±0.03 0.65 ±0.02 43 ±2 0.253 ±0.016
Normal subcutaneous (N ¼ 4) 0.09 ±0.07 0.45 ±0.04 0.47 ±0.03 43 ±4 0.417 ±0.052
Tumor subcutaneous (MCaIV N ¼ 11) −0.49 ±0.03 0.74 ±0.02 0.70 ±0.02 142 ±8 0.410 ±0.055
Normal cranial window (N ¼ 19) 0.35 ±0.04 0.33 ±0.02 0.39 ±0.02 40 ±2 0.463 ±0.023
Tumor cranial window (U87 N ¼ 52) 0.13 ±0.03 0.44 ±0.02 0.46 ±0.01 42 ±2 0.429 ±0.012
Normal mammary fat pad (N ¼ 5) −0.17 ±0.02 0.58 ±0.01 0.57 ±0.01 73 ±4 0.400 ±0.025
Tumor mammary fat pad (MCaIV N ¼ 4) −0.14 ±0.06 0.57 ±0.03 0.60 ±0.03 238 ±55 0.380 ±0.056

Percolation clusters at critical thresholds.
Distances to vessels in lattice constants for artificial structures, μm for images.
Curve-fitting for convexity index δ ≤ δmax∕3.
Curve-fitting for time exponent t ≤ ðδmax∕3Þ2∕D.
Diffusion simulations of artificial structures done by finite differences.
Diffusion simulations of image-based structures done by random walks.
Uncertainties are 1 standard error of mean.

Table S2. Relationship of fractal dimension to convexity index

Tissue

Fractal (box) dimension
from theory (T)
or image (I) Df

Convexity index calculated
from fractal dimension

λ ¼ D − Df − 1

Convexity index
calculated from

distance statistics λ

Koch curve (6 generations) 1.26(T) −0.26 −0.28
Sierpinski carpet (6 generations) 1.89 (T) −0.89 −1.15
Menger sponge (4 generations) 2.72(T) −0.72 −1.40
2D percolation (200 × 200 N ¼ 10) 1.89 (T) −0.89 −0.97 ± 0.09
3D percolation (64 × 64 × 64 N ¼ 10) 2.54 (T) −0.54 −0.34 ± 0.06
Normal subcutaneous (N ¼ 4) 1.82 ± 0.01 (I) 0.18 ± 0.01 0.09 ± 0.07
Tumor subcutaneous (MCaIV N ¼ 11) 2.05 ± 0.02 (I) −0.05 ± 0.02 −0.49 ± 0.04
Normal cranial window (N ¼ 19) 1.96 ± 0.03 (I) 0.04 ± 0.03 0.35 ± 0.04
Tumor cranial window (U87 N ¼ 52) 2.11 ± 0.02 (I) −0.11 ± 0.02 0.13 ± 0.03
Normal mammary fat pad (N ¼ 5) 1.91 ± 0.03 (I) 0.09 ± 0.03 −0.17 ± 0.02
Tumor mammary fat pad (MCaIV N ¼ 4) 1.99 ± 0.05 (I) 0.01 ± 0.05 −0.14 ± 0.06

Theoretical fractal dimensions based on infinite resolution.
Curve-fitting for box dimension S ≤ 2δmax∕3.
Curve-fitting for convexity index δ ≤ δmax∕3.
Uncertainties are 1 standard error of the mean.

Table S3. Imaging methods

Tissue type Site Imaging method Voxel size (μm3)

Normal Dorsal skinfold chamber Multiphoton 2.7 × 2.7 × 2.5
Normal Mammary fat pad Multiphoton 2.7 × 2.7 × 2.5
Normal Cranial window MultiPhoton 2.5 × 2.5 × 5
Tumor MCaIV Dorsal skinfold chamber Opt freq dom 5 × 5 × 4.1
Tumor MCaIV Mammary fat pad Opt freq dom 7.62 × 7.62 × 4.1
Tumor U87 Cranial window MultiPhoton 2.5 × 2.5 × 5
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