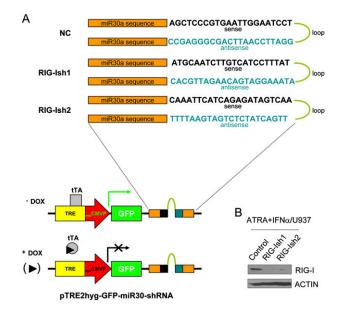
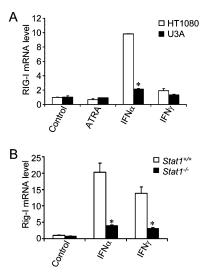

Supporting Information

Jiang et al. 10.1073/pnas.1019059108

Fig. S1. ATRA and IFN- α synergistically induce RIG-I expression and inhibit cell proliferation in U937 cells. (*A* and *C*) U937 cells were treated with 1 μ M ATRA and/or 1,000 U/mL IFN- α for different time courses. RIG-I mRNA level (*A*) and protein level (*B*) were measured by real-time PCR (n = 3, mean \pm SD, RA + IFN- α group vs. IFN- α group; *P < 0.05) and Western blotting assays, respectively. (*C*) Cell numbers were counted at the indicated time points after the treatments. (*D*) U937 cells were treated with 1 nM phorbol 12-myristate 13-acetate (PMA) for the different time points as indicated, and RIG-I mRNA level was measured by real-time PCR (n = 3, mean \pm SD).

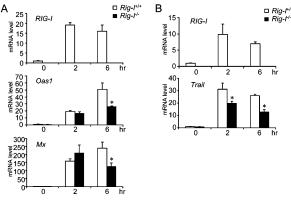
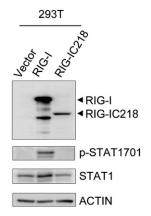
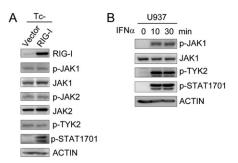
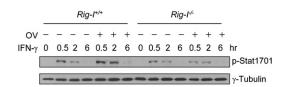

Fig. 52. Establishment of RIG-I knockdown U937 cell lines. (A) (*Upper*) Core shRNA sequences are listed. The core shRNA sequences and the flanked miR30a sequences are inserted into the 3' UTR of a GFP-coding sequence in pTRE2hyg vector. (*Lower*) Production of GFP-shRNA transcript in host cells is under the control of a tetracycline-controlled transactivator (tTA)-inducible tetracycline-responsive element CMV promoter (TRE-CMVP) regulatory element. (*B*) After the stimulation with 1 μ M ATRA plus 1,000 U/mL IFN- α 2b for 48 h, RIG-I protein expression levels in the control or RIG-I knockdown U937 cell lines (RIG-Ish1 and RIG-Ish2) were assessed by Western blotting assay.

Fig. S3. IFN- α stimulates RIG-I expression through STAT1. (*A*) STAT1 WT HT1080 cells or STAT1-deficient derivative U3A cells (1, 2) were individually treated without or with 1 μ M ATRA, 1,000 U/mL IFN- α , or 1,000 U/mL IFN- γ for 12 h. The mRNA levels of RIG-I were determined by real-time PCR assay (*n* = 3, mean \pm SD; **P* < 0.05). (*B*) BM myeloid cells from Stat1 WT or knockout mice were treated with 1,000 U/mL IFN- α or 30 ng/mL IFN- γ for 2 h, and the Rig-I mRNA levels were then measured by real-time PCR assay (*n* = 3, mean \pm SD; **P* < 0.05).

1. DeVries TA, Kalkofen RL, Matassa AA, Reyland ME (2004) Protein kinase Cdelta regulates apoptosis via activation of STAT1. J Biol Chem 279:45603-45612.

2. Müller M, et al. (1993) Complementation of a mutant cell line: Central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J 12:4221–4228.

Fig. 54. ISG induction during the early phase is impaired by Rig-I deficiency. Primary $Rig-I^{+/+}$ or $Rig-I^{-/-}$ BM myeloid cells were stimulated by 1,000 U/mL IFN- α (*A*) or 30 ng/mL IFN- γ (*B*) for different time points as indicated. Relative mRNA levels of various ISGs were measured by real-time PCR assay (*n* = 3, mean ± SD; **P* < 0.05).

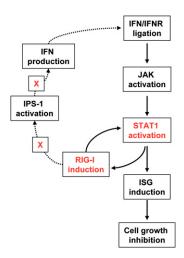

Fig. S5. STAT1 activation by RIG-I induction requires caspase recruitment domains (CARDs). RIG-IC218–expressing plasmid, which encodes a RIG-I mutant ranging from amino acids 218–925 of the WT RIG-I (with the deletion of the N-terminal CARDs), is transiently transfected into 293T, in parallel with the transfection of a full-length RIG-I–encoding plasmid. After 48 h, the tyrosine-phosphorylated and total levels of STAT1 were examined by Western blotting assay.

Fig. S6. RIG-I induction does not promote the activation of JAK family members. (*A*) U937/vector and U937/RIG-I cells were cultured in the Tc⁻ medium for 6 d, and the cell protein extracts were detected by Western blotting analysis for phosphorylated levels of JAK1, JAK2, and TYK2. (*B*) U937 cells were treated with 1,000 U/mL IFN- α for the indicated time points, and the cell lysates were analyzed by Western blotting assay.

Fig. 57. Phosphatase inhibitor treatment fails to rescue the hypophosphorylated status of Stat1 in *Rig-I^{-/-}* myeloid cells. *Rig-I^{+/+}* and *Rig-I^{-/-}* BM myeloid cells were treated with 30 ng/mL IFN-γ, with or without 0.1 mM sodium orthovanadate (OV), for different time points as indicated. Cells were then collected for protein extracts and detected by Western blotting analysis for tyrosine 701-phosphorylated Stat1.

Fig. S8. Diagram depicts an amplifying role of RIG-I induction on STAT1 activation. Within the canonical IFN signaling pathway, IFN ligands bind to their receptors on the membrane and the activated JAK family kinases trigger the phosphorylation/activation of STAT1, which, in turn, induces the expression of numerous ISGs, including RIG-I. Our data indicate that RIG-I induction exerts a positive feedback effect on STAT1 activation, which critically amplifies ISG expression and cellular growth-inhibiting effect. In addition, RIG-I induction triggers STAT1 activation via a mechanism independent of further stimulating IPS-1 or JAKs, indicating the existence of a noncanonical STAT1 activation pathway through which RIG-I induction acts.

Table S1.	siRNA	sequences	for	the	indicated	aenes

Knockdown constructs	Target sequences(5'-3')
RIG-lsh1	TGCAATCTTGTCATCCTTTAT
RIG-Ish2	AAATTCATCAGAGATAGTCAA
IPS-1sh1	CCTGGTGCAGTGCCTTCTAAT
IPS-1sh2	GGCAGGTCAGTTAACAATTTA
STAT1sh1	GCAAGCGTAATCTTCAGGATA
STAT1sh2	CCTGAAGTATCTGTATCCAAA
NC	GCTCCCGTGAATTGGAATCCT

NC, negative control.

Table S2.	Primers	used	for	real-time	PCR	assays
-----------	---------	------	-----	-----------	-----	--------

PNAS PNAS

Genes	Forward primers (5'-3')	Reverse primers (5'-3')
Human RIG-I	GGACGTGGCAAAACAAATCAG	GCAATGTCAATGCCTTCATCA
Human STAT1	ACCGCACCTTCAGTCTTTTCC	TGAACTGGACCCCTGTCTTCA
Human TRAIL	GAAGCAACACATTGTCTTCTCCAA	TGATGATTCCCAGGAGTTTATTTTG
Human KLF4	TCCCGCCGCTCCATTAC	CGATCGTCTTCCCCTCTTTG
Human OAS1	CTCATCCGCCTAGTCAAGCACT	CAAGCATAGACCGTCAGGAGCT
Human IFN-β	CAGCAATTTTCAGTGTCAGAAGCT	TCATCCTGTCCTTGAGGCAGTA
Human PKR	AGCAAAACAATTGGCCGC	AGCGAGTGTGCTGGTCACTAA
Mouse Rig-I	GGACGTGGCAAAACAAATCAG	GCAATGTCAATGCCTTCATCA
Mouse Icsbp	GCCATACAAAGTTTACCGAATTGTTC	TCACGCAGCCAGCAGTTG
Mouse Trail	GAAGCAACACATTGTCTTCTCCAA	TGATGATTCCCAGGAGTTTATTTTG
Mouse Klf4	TCCCGCCGCTCCATTAC	CGATCGTCTTCCCCTCTTTG
Mouse Oas1	GCCTGGTCACGCACTGGTA	AAGCCCTGGGCTGTGTTG
Mouse Pkr	GCTGCGAAAGAAGCCTATCAGA	TGCTGGAAAAGCCACTGAATG
Mouse Mx	TCCCAGACCTGACTCTCATTGA	GGTTGATGGTCTCTTGTTTTTGG
18s	CGCGGTTCTATTTTGTTGGTTT	TTCGCTCTGGTCCGTCTTG