Development of proneurogenic, neuroprotective small molecules

Karen S. MacMillan,¹ Jacinth Naidoo,¹ Jue Liang,¹ Lisa Melito,¹ Noelle S. Williams,¹ Lorraine

Morlock,¹ Paula J. Huntington,² Sandi Jo Estill,¹ Jamie Longgood,¹ Ginger L. Becker,² Steven L.

McKnight,¹ Andrew A. Pieper^{1,2,*} Jef K. De Brabander,¹ and Joseph M. Ready^{1,*}

Departments of Biochemistry and Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines

Boulevard, Dallas, Texas 75390-9038

Complete references.

Ref 19a: Pieper, A.A.; Xie, S.; Capota, E.; Estill, S.J.; Zhong, J.; Long, J.M.; Becker, G.L.; Huntington.; Goldman, S.E.; Shen, C.H.; Capota, M.; Britt, J.K.; Kotti, T.; Brat, D. J.; Williams, N.S.; MacMillan, K.S.; Naidoo, J.; Melito, L.; Hsieh, J.; De Brabander, J.; Ready, J.M.; McKnight, S.L. *Cell* **2010**, *142*, 39-51. \

Ref 38b. Drexler, D. M.; Belcastro, J. V.; Kickinson, K. E.; Edinger, K. J.; Hnatyshy, S. Y.; Josephs, J. L.; Langish, R. A.; McNaney, C. A.; Santone, K. S.; Shipkova, P. A.; Tymiak, A. A.; Zvyaga, T. A.; Sanders, M. Assay Drug Devel. Technol. 2007, 5, 247.

¹ Department of Biochemistry

² Department of Psychiatry

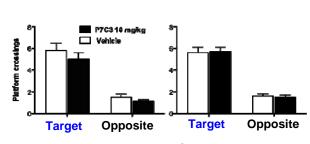
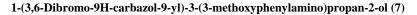
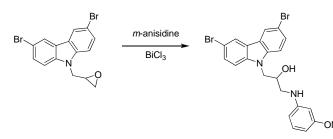


Figure S1: Daily administration of P7C3 at a known proneurogenic dose (10 mg/kg/day i.p,) to 11 month old male Fisher =-344 rats (n=18 for P7C3 and VEH control groups) for 2 months starting at 9 months of age does not improve performance in the Morris water maze task probe test, a task of hippocampal-dependent learning. This is in contrast to the ability of P7C3 to improve performance in this task following identical treatment in 20 month old aged rats, in which decline in ability to perform in this task is associated with a characteristic decline in hippocampal neurogenesis seen in these animals (ref 19, main text). These results suggest that a beneficial effect of augmenting hippocampal neurogenesis is more readily observed under conditions of pathologically diminished hippocampal neurogenesis in aged animals than under normal basal adult levels in younger adult rats.

Representative Procedure 1: Epoxide formation


3,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide A)

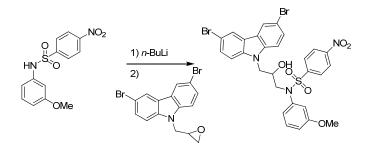


Following a literature procedure,¹ powdered KOH (0.103 g, 1.85 mmol) was added to a solution of 3,6-dibromocarbazole (0.500 g, 1.54 mmol) in DMF (1.5 mL) at ambient temperature and stirred for 30 min until dissolved. Epibromohydrin (0.32 mL, 3.8 mmol) was added via syringe and the reaction was stirred at room temperature overnight. Upon completion, the solution was partitioned between EtOAc and H₂O. The aqueous layer was washed 3×EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was recrystallized from EtOAc/Hexane to afford epoxide A (389 mg, 66%).

¹H NMR (CDCl₃, 500 MHz) δ 8.10 (d, 2H, *J* = 2.0 Hz), 7.54 (dd, 2H, *J* = 2.0, 8.5 Hz), 7.31 (d, 2H, *J* = 8.5 Hz), 4.62 (dd, 1H, *J* = 2.5, 16.0 Hz), 4.25 (dd, 1H, *J* = 5.5, 16.0 Hz), 3.29 (m, 1H), 2.79 (dd, 1H, *J* = 4.0, 4.5 Hz), 2.46 (dd, 1H, *J* = 2.5, 5.0 Hz).

Representative Procedure 2: Opening epoxide with aniline

Following a literature procedureⁱⁱ, *m*-anisidine (1.0 mL, 8.95 mmol) was added to a suspension of epoxide **A** (3.02 g, 7.92 mmol) in cyclohexane (73 mL). BiCl₃ (0.657 g, 2.08 mmol) was added and the mixture was heated to reflux overnight. Upon completion, the reaction was partitioned between EtOAc and H₂O. The aqueous layer was washed $3 \times \text{EtOAc}$, and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford **7** as an opaque yellow solid (998 mg, 25%).

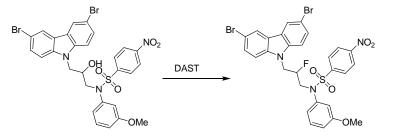

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 1.6 Hz), 7.52 (dd, 2H, *J* = 2.0, 8.8 Hz), 7.32 (d, 2H, *J* = 8.8 Hz), 7.07 (t, 1H, *J* = 8.0 Hz), 6.31 (dd, 1H, *J* = 2.4, 8.0 Hz), 6.21 (dd, 1H, *J* = 2.0, 8.0 Hz), 6.12 (dd, 1H, *J* = 2.0, 2.4 Hz), 4.34–4.39 (m, 3H), 4.00 (br s, 1H), 3.71 (s, 3H), 3.30 (dd, 1H, *J* = 3.6, 13.2 Hz), 3.16 (dd, 1H, *J* = 6.4, 13.2 Hz), 2.16 (br s, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 149.2, 139.9 (2C), 130.4 (2C), 129.5 (2C), 123.8 (2C), 123.5 (2C), 112.8, 111.0 (2C), 106.7, 103.8, 99.8, 69.5, 55.3, 48.0, 47.4.

ESI *m/z*: 502.9 ([M+H]⁺, C₂₂H₂₁Br₂N₂O₂ requires 503.0).

Representative Procedure 3: Epoxide opening with Ns-protected anilines

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (Ns-A)

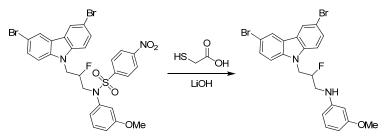

A heterogeneous mixture of *N*-(4-methoxyphenyl)-4-nitrobenzenesulfonamide (100.2 mg, 0.32 mmol) in toluene (2.5 mL, 0.13 M) under a N₂ atmosphere was cooled in a dry ice/acetone bath before dropwise addition of *n*-butyllithium (200 μ L of 1.78 M in hexanes, 0.36 mmol). The reaction was stirred at -78 °C for 10 minutes before addition of epoxide **A**. The heterogeneous mixture was stirred at room temperature for 5 min before heating at 100 °C for 48 h. The cooled reaction was diluted with EtOAc and washed 3×5% acetic acid solution, followed by a brine wash. The organic layer was dried over Na₂SO₄, filtered and condensed. The crude mixture was purified by chromatography (SiO₂, 100% CH₂Cl₂) to afford Ns-**A** (88%).

¹H NMR (CDCl₃, 400 MHz) δ 8.23 (d, 2H, *J* = 8.5 Hz), 8.06 (d, 2H, *J* = 1.9 Hz), 7.65 (d, 2H, *J* = 8.5 Hz), 7.46, (dd, 2H, *J* = 1.9, 8.6 Hz), 7.22 (d, 2H, *J* = 8.8 Hz), 6.94 (d, 2H, *J* = 8.8 Hz), 6.83 (d, 2H, *J* = 9.1 Hz), 4.44 (dd, 1H, *J* = 3.6,14.9 Hz), 4.26–4.34 (m, 1H), 4.17–4.24 (br s, 1H), 3.81 (s, 3H), 3.62–3.75 (m, 2H).

ESI m/z: 732.0 ([M+HCOO]⁻, C₂₉H₂₄Br₂N₃O₈S requires 732.0).

Representative Procedure 4: Fluorination of P7C3 analogues

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (Ns-B)

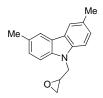

An oven dried 20 mL scintillation vial containing Ns-A (18.3 mg, 0.027 mmol) was purged with N₂ and charged with anhydrous CH_2Cl_2 (1.5 mL, 0.018 M). The sealed vial was cooled in a dry ice acetone bath before the dropwise addition of diethylaminosulfur trifluoride (DAST, 7 µL, 0.053 mmol). The reaction temperature was maintained at -78 °C for an hour and then slowly warmed to room temperature and stirred overnight. The reaction was quenched with 2.0 mL of saturated NaHCO₃ solution and diluted with 6 mL CH_2Cl_2 and extracted three times. The combined organics were dried over Na₂SO₄, filtered and condensed. The crude product was carried forward without further purification. Alternatively, morpholinosulfur trifluoride (MORPHO-DAST) can be used at r.t.

¹H NMR (CDCl₃, 400 MHz) δ 8.28 (d, 2H, *J* = 8.0 Hz), 8.13 (s, 2H), 7.72 (d, 2H, *J* = 8.7 Hz), 7.54, (d, 2H, *J* = 8.0 Hz), 7.21 (d, 3H, *J* = 8.1 Hz), 6.89 (dd, 1H, *J* = 2.4, 8.3 Hz), 6.67 (t, 1H, *J* = 2.0 Hz), 6.55 (d, 1H, *J* = 8.0 Hz), 4.93 (m, 1H), 4.43–4.68 (m, 2H), 4.20 (t, 1H, *J* = 6.2 Hz), 3.81–3.99 (m, 2H), 3.75 (s, 3H).

ESI *m/z*: 733.9 ([M+HCOO]⁻, C₂₉H₂₃Br₂FN₃O₇S requires 734.0).

Representative Procedure 5: Nosyl group deprotection²

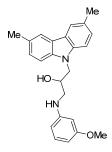
N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline (53)



To a vial containing Ns-**B** (21.0 mg, 0.030 mmol) was added lithium hydroxide (3.2 mg, 0.134 mmol), DMF (0.5 mL, 0.06 M) and mercaptoacetic acid (4.2 μ L, 0.060 mmol). After stirring at r.t. for 1 h the reaction mixture was diluted with EtOAc and washed sequentially with H₂O, saturated aqueous NaHCO₃, H₂O (3×) and brine. The organic layer was dried over Na₂SO₄, filtered and condensed. The crude reaction mixture was purified (SiO₂, 30% EtOAc/Hexanes + 0.2% Et₃N), to afford **53** (13.6 mg, 88%).

¹H NMR (CDCl₃, 500 MHz) δ 8.16 (d, 2H, *J* = 2.0 Hz), 7.56 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.31 (d, 2H, *J* = 8.6 Hz), 7.11 (t, 1H, *J* = 8.1 Hz), 6.36 (dd, 1H, *J* = 2.2, 8.1 Hz), 6.23 (dd, 1H, *J* = 2.0, 8.0 Hz), 6.15 (t, 1H, *J* = 2.3 Hz), 5.11 (dddd, 1H, *J* = 4.6, 5.8, 10.4, 47.7 Hz), 4.60 (m, 2H), 4.39 (dm, 2H), 3.95 (t, 1H, *J* = 6.3 Hz), 3.75 (s, 3H).

ESI m/z: 504.9 ([M+H]⁺, C₂₂H₂₀Br₂FN₂O calculated 505.0).


3,6-Dimethyl-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide B)

Following Representative Procedure 1, 3,6-dimethyl carbazole³ was added to epichlorohydrin in to afford epoxide **B** in 69% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.84 (d, 2H, *J* = 1.0 Hz), 7.30 (d, 2H, *J* = 8.5 Hz), 7.26 (dd, 2H, *J* = 1.0, 8.5 Hz), 4.54 (dd, 1H, *J* = 3.5, 16.0 Hz), 4.35 (dd, 1H, *J* = 4.5, 16.0 Hz), 3.30 (m, 1H), 2.76 (dd, 1H, *J* = 4.0, 5.0 Hz), 2.52 (s, 6H), 2.51 (m, 1H).

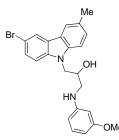
1-(3,6-Dimethyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (14)

Following Representative Procedure 2, 14 was prepared from epoxide B in 22 % following purification by preparative TLC.

¹H NMR (CDCl₃, 500 MHz) δ 7.84 (d, 2H, *J* = 0.5 Hz), 7.30 (d, 2H, *J* = 8.0 Hz), 7.23 (d, 2H, *J* = 8.0 Hz), 7.05 (t, 1H, *J* = 8.0 Hz), 6.28 (dd, 1H, *J* = 2.5, 8.0 Hz), 6.21 (dd, 1H, *J* = 2.5, 8.0 Hz), 6.12 (dd, 1H, *J* = 2.0, 2.5 Hz), 4.39 (m, 3H), 4.01 (br s, 1H), 3.68 (s, 3H), 3.31 (dd, 1H, *J* = 3.0, 11.5 Hz), 3.17 (dd, 1H, *J* = 6.5, 13.0 Hz), 2.51 (s, 6H), 2.13 (br s, 1H).

¹³C NMR (CDCl₃, 125 MHz) δ 161.0, 149.5, 139.5 (2C), 130.3 (2C), 128.7, 127.3 (2C), 123.2 (2C), 120.5 (2C), 108.7 (2C), 106.7, 103.7, 99.5, 69.7, 55.2, 48.0, 47.4, 21.6 (2C).

ESI *m/z* 375.2 ([M+H]⁺, C₂₄H₂₇N₂O₂ requires 375.2).


3-Bromo-6-methyl-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide C)

Following Representative Procedure 1, epoxide C was prepared in 74% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, 1H, *J* = 1.5 Hz), 7.80 (d, 1H, *J* = 1.0 Hz), 7.50 (dd, 1H, *J* = 2.0, 8.5 Hz), 7.33–7.28 (m, 3H), 4.57 (dd, 1H, *J* = 3.0, 15.5 Hz), 4.29 (dd, 1H, *J* = 5.0, 15.5 Hz), 3.29 (m, 1H), 2.77 (dd, 1H, *J* = 4.0, 4.5 Hz), 2.51 (s, 3H), 2.48 (dd, 1H, *J* = 2.5, 4.5 Hz).

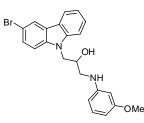
1-(3-Bromo-6-methyl-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (15)

Following Representative Procedure 2, 15 was prepared from epoxide C in 41% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.14 (d, 1H, J = 2.0 Hz), 7.81 (s, 1H), 7.48 (dd, 1H, J = 2.0, 8.5 Hz), 7.31 (d, 1H, J = 5.0 Hz), 7.29 (br s, 1H), 7.06 (t, 1H, J = 8.5 Hz), 6.29 (dd, 1H, J = 2.0, 8.0 Hz), 6.21 (dd, 1H, J = 2.0, 8.0 Hz), 6.11 (t, 1H, J = 2.0 Hz), 4.37 (m, 3H), 3.99 (br s, 1H), 3.70 (s, 3H), 3.30 (dd, 1H, J = 3.5, 13.5 Hz), 3.16 (dd, 1H, J = 6.5, 13.5 Hz), 2.51 (s, 3H), 2.14 (br s, 1H).

¹³C NMR (CDCl₃, 125 MHz) δ 161.0, 149.4, 139.8, 139.5, 130.3, 129.4, 128.5, 128.2, 124.7, 123.2, 122.3 120.7, 112.1, 110.6, 109.0, 106.7, 103.7, 99.6, 69.5, 55.3, 47.9, 47.4, 21.5.

ESI *m*/z 439.1 ([M+H]⁺, C₂₃H₂₄BrN₂O₂ requires 439.1).


3-Bromo-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide D)

Prepared according to Representative Procedure 1.

¹H NMR (CDCl₃, 400 MHz) δ 8.19 (d, 1H, *J* = 1.7 Hz), 8.02 (d, 1H, *J* = 5.1 Hz), 7.58–7.42 (m, 3H), 7.35 (d, 1H, *J* = 8.7 Hz), 7.26 (t, 1H, *J* = 7.3 Hz), 4.64 (dd, 1H, *J* = 2.9, 15.9 Hz), 4.34 (dd, 1H, *J* = 4.9, 15.9 Hz), 3.33 (dt, 1H, *J* = 2.2, 5.3 Hz), 2.80 (t, 1H, *J* = 4.3 Hz), 2.52 (dd, 1H, *J* = 2.6, 4.6 Hz).

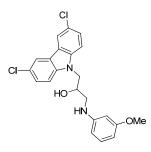
1-(3-Bromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (16)

Prepared from epoxide **D** following Representative Procedure 2.

¹H NMR (CDCl₃, 400 MHz) δ 8.21 (d, 1H, *J* = 1.9 Hz), 8.05 (d, 1H, *J* = 7.9 Hz), 7.53 (dd, 1H, *J* = 1.9, 8.7 Hz), 7.51–7.44 (m, 2H), 7.36 (d, 1H, *J* = 8.7 Hz), 7.30–7.24 (m, 1H), 7.08 (t, 1H, *J* = 8.1 Hz), 6.32 (dd, 1H, *J* = 2.3, 8.2 Hz), 6.24 (dd, 1H, *J* = 2.2, 8.0 Hz), 6.15 (t, 1H, *J* = 2.3 Hz), 4.50–4.36 (m, 3H), 4.03 (br s, 1H), 3.72 (s, 3H), 3.35 (dd, 1H, *J* = 3.2, 13.0 Hz), 3.21 (dd, 1H, *J* = 6.5, 13.0 Hz), 2.13 (d, 1H, *J* = 3.0 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 149.4, 141.2, 139.6, 130.4, 128.8, 126.9, 125.0, 123.3, 122.2, 120.8, 120.1, 112.4, 110.7, 109.4, 106.7, 103.8, 99.7, 69.6, 55.3, 48.0, 47.4.

ESI m/z: 425.0 ([M + H]⁺, C₂₂H₂₂BrN₂O₂ requires 425.1).


3,6-Dichloro-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide E)

Following Representative Procedure 1, epoxide E was prepared in 23% yield.

¹H NMR (CDCl₃, 600 MHz) δ 7.92 (d, 2H, *J* = 1.8 Hz), 7.40 (dd, 2H, *J* = 1.8, 9.0 Hz), 7.32 (d, 2H, *J* = 9.0 Hz), 4.59 (dd, 1H, *J* = 3.0, 16.2 Hz), 4.22 (dd, 1H, *J* = 5.4, 16.2 Hz), 3.27 (m, 1H), 2.78 (dd, 1H, *J* = 4.2, 4.8 Hz), 2.46 (dd, 1H, *J* = 2.4, 4.8 Hz).

1-(3,6-Dichloro-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (17)

Following Representative Procedure 2, 17 was prepared from epoxide E in 37% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.95 (d, 2H, J = 2.0 Hz), 7.38 (dd, 2H, J = 2.0, 8.5 Hz), 7.33 (d, 2H, J = 9.0 Hz), 7.06 (t, 1H, J = 8.0 Hz), 6.30 (dd, 1H, J = 2.0, 8.0 Hz), 6.20 (dd, 1H, J = 2.0, 8.0 Hz), 6.11 (dd, 1H, J = 2.0, 2.5 Hz), 4.30–4.35 (m, 3H), 3.70 (s, 3H), 3.28 (dd, 1H, J = 3.5, 13.0 Hz), 3.13 (dd, 1H, J = 6.5, 13.0 Hz).

¹³C NMR (CDCl₃, 150 MHz) δ 161.0, 149.3, 139.7, 130.4 (2C), 126.9 (2C), 125.5 (2C), 123.4 (2C), 120.4 (2C), 110.5 (2C), 106.7, 103.8, 99.8, 69.6, 55.3, 48.0, 47.5.

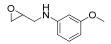
ESI m/z 415.0 ([M+H]⁺, C₂₂H₂₁Cl₂N₂O₂ requires 415.1).

3-Azido-6-bromo-9H-carbazole (Carbazole A)

Following a literature procedure⁴, 3,6-dibromocarbazole (0.500 g, 1.538 mmol), NaN₃ (0.120 g, 1.846 mmol), CuI (0.029 g, 0.154 mmol), L-proline (0.053 g, 0.461 mmol) and NaOH (0.019 g, 0.461 mmol) were dissolved in 7:3 EtOH/H₂O (3.0 mL) and heated to 95 °C under a N₂ atmosphere for 24 h. The completed reaction was partitioned between EtOAc/H₂O (3×) and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by flash chromatography (SiO₂, 0–15% EtOAc/toluene), followed by HPLC (Phenomenex SiO₂ Luna 10 μ , 250×21.2 mm column, 50% EtOAc/Hexane, 21 mL/min, retention time = 48 min) to afford carbazole **A**.

¹H NMR (CDCl₃, 500 MHz) δ 8.14 (s, 1H), 8.08 (br s, 1H), 7.64 (s, 1H), 7.50 (d, 1H, J = 8.5 Hz), 7.38 (d, 1H, J = 9.0 Hz), 7.29 (d, 1H, J = 8.5 Hz), 7.10 (d, 1H, J = 9.0 Hz).

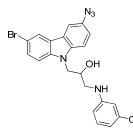
ESI *m/z* 285.0 ([M–H]⁻, C₁₂H₆BrN₄ requires 285.0).


1-Chloro-3-(3-methoxyphenylamino)propan-2-ol (Chlorohydrin A)

m-Anisidine (0.25 mL, 4.47 mmol) was added to epichlorohydrin (0.22 mL, 5.37 mmol) in acetic acid (0.5 mL) and the mixture was heated to 75 °C. Upon completion the reaction was neutralized with saturated NaHCO₃ to pH 7, then extracted $3 \times$ EtOAc, washed with brine and dried with MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford chlorohydrin **A** (303 mg, 63%).

¹H NMR (CDCl₃, 500 MHz) δ 7.08 (t, 1H, *J* = 8.5 Hz), 6.29 (dd, 1H, *J* = 2.5, 8.5 Hz), 6.25 (dd, 1H, *J* = 2.5, 8.0 Hz), 6.19 (t, 1H, *J* = 2.5 Hz), 4.07 (m, 1H), 3.75 (s, 3H), 3.67 (dd, 1H, *J* = 4.5, 11.0 Hz), 3.62 (dd, 1H, *J* = 6.0, 11.5 Hz), 3.35 (dd, 1H, *J* = 4.5, 13.0 Hz), 3.21 (dd, 1H, *J* = 7.0, 13.0 Hz), 2.31 (br s, 1H).

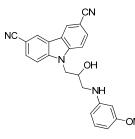
ESI m/z 216.0 ([M+H]⁺, C₁₀H₁₅ClNO₂ requires 216.1).


3-Methoxy-N-(oxiran-2-ylmethyl)aniline (Epoxide F)

Following a literature procedure⁵, chlorohydrin A (0.300 g, 1.391 mmol) was dissolved in dioxane (4.6 mL) and KOH (0.095 g, 1.669 mmol) was added to the solution. The reaction was followed by TLC (30% EtOAc/Hexane) until the starting material was consumed and the less polar product was obtained. After aqueous workup, the crude epoxide **F** was used without purification.

¹H NMR (CDCl₃, 500 MHz) δ 7.24 (t, 1H, *J* = 8.0 Hz), 6.28 (dd, 1H, *J* = 2.5, 8.0 Hz), 6.24 (dd, 1H, *J* = 2.0, 8.0 Hz), 6.18 (t, 1H, *J* = 2.5 Hz), 3.90 (br s, 1H), 3.76 (s, 3H), 3.51 (m, 1H), 3.22 (m, 1H), 3.18 (m, 1H), 2.80 (dd, 1H, *J* = 4.0, 4.5 Hz), 2.67 (dd, 1H, *J* = 2.0, 5.0 Hz).

1-(3-Azido-6-bromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)propan-2-ol (18)


NaH (0.002 g, 0.046 mmol) was added to a solution of carbazole **A** (0.012 g, 0.042 mmol) in anhydrous THF, cooled to 0 °C and stirred for 45 min. A solution of epoxide **F** (0.009 g, 0.0502 mmol) in anhydrous THF (0.1 mL) was added dropwise to the reaction mixture. The reaction was warmed to room temperature and stirred overnight. Upon completion, the reaction was quenched with saturated aqueous NH₄Cl and extracted with EtOAc ($3\times$). The combined organics were concentrated and purified by chromatography (SiO₂, 0–30% EtOAc/Hexane) to afford **18** (7.5 mg, 46%).

¹H NMR (CDCl₃, 500 MHz) δ 8.14 (d, 1H, J = 1.5 Hz), 7.64 (d, 1H, J = 2.0 Hz), 7.52 (dd, 1H, J = 1.5, 8.5 Hz), 7.40 (d, 1H, J = 9.0 Hz), 7.31 (d, 1H, J = 8.5 Hz), 7.12 (dd, 1H, J = 2.0, 8.5 Hz), 7.07 (dd, 1H, J = 8.0, 8.0 Hz), 6.31 (dd, 1H, J = 2.0, 8.0 Hz), 6.21 (dd, 1H, J = 1.5, 8.0 Hz), 6.13 (dd, 1H, J = 2.0, 2.5 Hz), 4.39–4.35 (m, 3H), 3.71 (s, 3H), 3.31 (dd, 1H, J = 3.5, 13.0 Hz), 3.16 (dd, 1H, J = 7.0, 13.0 Hz), 2.17 (br s, 1H).

¹³C NMR (CDCl₃, 150 MHz) δ 161.1, 149.3, 140.2, 138.8, 132.4, 130.4, 129.5, 124.1, 123.6, 123.1, 118.5, 112.6, 111.0, 110.6 (2C), 106.7, 103.8, 99.8, 69.6, 55.3, 48.0, 47.5.

ESI m/z 466.0 ([M+H]⁺, C₂₂H₂₁BrN₅O₂ requires 466.1).

9-(2-Hydroxy-3-(3-methoxyphenylamino)propyl)-9H-carbazole-3,6-dicarbonitrile (19)

Following a literature proceudre,⁶ 7 (0.0252 g, 0.05 mmol), potassium hexacyanoferrate(II) trihydrate (0.0106 g, 0.025 mmol), sodium bicarbonate (0.0106 g, 0.1 mmol) and palladium acetate (1 mol%, 0.0001 g) were combined under a N₂ atmosphere. Anhydrous dimethylacetamide (0.1 mL) was added, and the reaction mixture was stirred at 120 °C overnight. The crude reaction mixture was diluted with 10 mL EtOAc and washed with H₂O (2×10 mL) and brine (1×30 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford **19** as a white solid (0.0110 g, 55%).

¹H NMR (acetone- d_6 , 400 MHz) δ 8.74 (s, 2H), 7.91 (d, 2H, J = 8.6 Hz), 7.84 (dd, 2H, J = 1.2, 8.6 Hz), 7.01 (t, 1H, J = 8.1 Hz), 6.31 (dd, 1H, J = 1.2, 8.1 Hz), 6.27 (t, 1H, J = 2.0 Hz), 6.22 (dd, 1H, J = 2.1, 8.1 Hz), 5.16 (t, 1H, J = 5.8 Hz), 4.77 (dd, 1H, J = 3.4, 15.1 Hz), 4.66 (dd, 1H, J = 8.5, 15.0 Hz), 4.44 (br s, 1H), 3.71 (s, 3H), 3.50–3.43 (m, 1H), 3.36–3.28 (m, 1H), 2.81 (s, 1H).

¹³C NMR (acetone-*d*₆, 125 MHz) δ 161.3, 150.4, 143.9, 130.02, 129.95, 126.0, 122.4, 119.8, 112.0, 106.0, 103.3, 102.5, 98.9, 69.0, 54.5, 48.0, 47.7.

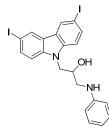
ESI *m*/z 441.1 ([M + HCOO]⁻, C₂₅H₂₁N₄O₄ requires 441.2).

3,6-Diiodo-9H-carbazole (Carbazole B)

Following a literature procedure⁷, to a solution of 9H-carbazole (0.0500 g, 0.299 mmol) and bis(pyridine)iodine(I) tetrafluoroborate (0.2780 g, 0.748 mmol) in 8 mL CH₂Cl₂, was added dropwise trifluoromethanesulfonic acid (26.5 μ L, 0.299 mmol). The mixture was sealed and stirred in a 20 mL scintillation vial at room temperature for 20 h or until TLC showed the complete disappearance of starting material. The crude was diluted with 30 mL EtOAc and washed 3×30 mL with saturated NaHCO₃ and 1×30 mL with brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford carbazole **B** as a white solid (0.0212 g, yield 21%).

¹H NMR (CDCl₃, 400 MHz) δ 8.33 (d, 1H, *J* = 1.0 Hz), 8.10 (br s, 1H), 7.68 (dd, 1H, *J* = 1.7, 8.5 Hz), 7.22 (d, 1H, *J* = 8.5 Hz).

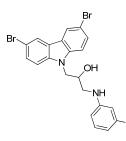
ESI m/z 417.8 ([M-H]⁻, C₁₂H₆I₂N requires 417.9).


3,6-Diiodo-9-(oxiran-2-ylmethyl)-9H-carbazole (Epoxide G)

Following Representative Procedure 1, epoxide G was prepared from carbazole B in 96% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.33 (d, 2H, *J* = 1.7 Hz), 7.73 (dd, 2H, *J* = 1.6, 8.6 Hz), 7.24 (d, 2H, *J* = 8.6 Hz), 4.64 (dd, 1H, *J* = 2.7, 15.9 Hz), 4.28 (dd, 1H, *J* = 5.1, 16.0 Hz), 3.37–3.24 (m, 1H), 2.80 (t, 1H, *J* = 4.3 Hz), 2.48 (dd, 1H, *J* = 2.6, 4.6 Hz).

¹³C NMR (CDCl₃, 125 MHz) δ 140.0, 135.0, 129.5, 124.3, 111.3, 82.6, 50.6, 45.2, 44.9.


Following Representative Procedure 2, 20 was prepared from epoxide G in 28% yield.

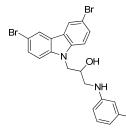
¹H NMR (CDCl₃, 400 MHz) δ 8.35 (s, 2H), 7.72 (d, 2H, *J* = 8.6 Hz), 7.28 (d, 2H, *J* = 2.5 Hz), 7.20 (t, 2H, *J* = 7.7 Hz), 6.78 (t, 1H, *J* = 7.3 Hz), 6.63 (d, 2H, *J* = 8.3 Hz), 4.49–4.29 (m, 3H), 3.33 (d, 1H, *J* = 10.9 Hz), 3.19 (dd, 1H, *J* = 6.1, 12.8 Hz), 2.92 (br s, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 147.9, 140.1, 135.1, 129.65, 129.63, 124.4, 118.9, 113.7, 111.5, 82.6, 69.6, 48.0, 47.3.

ESI *m/z* 613.0 ([M+HCOO]⁻, C₂₂H₁₉I₂N₂O₃ requires 613.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-ethoxyphenylamino)propan-2-ol (21)

Following Representative Procedure 2, 21 was prepared from epoxide A in 53% yield.

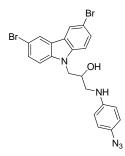

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (d, 2H, J = 1.9 Hz), 7.53 (dd, 2H, J = 1.9, 8.7 Hz), 7.32 (d, 2H, J = 8.7 Hz), 7.04 (t, 1H, J = 8.1 Hz), 6.20 (d, 1H, J = 9.6 Hz), 6.12 (d, 1H, J = 2.2 Hz), 4.49–4.36 (m, 3H), 4.05–3.91 (m, 3H), 3.29 (d, 1H, J = 12.2 Hz), 3.18 (d, 1H, J = 16.0 Hz), 2.12 (d, 1H, J = 3.2 Hz), 1.36 (t, 3H, J = 7.0 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 160.4, 149.2, 139.9 (2C), 130.4 (2C), 129.5 (2C), 123.8, 123.5 (2C), 112.8 (2C), 111.0 (2C), 106.7, 104.4, 100.2, 69.5, 63.4, 48.0, 47.4, 15.1.

ESI *m*/z 516.9 ([M+H])⁺, C₂₃H₂₃Br₂N₂O₂ requires 517.0).

)Fi

1-(3-Azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (22)

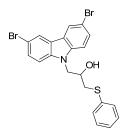


Following Representative Procedure 2, 22 was prepared from epoxide A in 14% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, 2H, *J* = 2.0 Hz), 7.53 (dd, 2H, *J* = 2.0, 8.5 Hz), 7.31 (d, 2H, *J* = 8.5 Hz), 7.12 (t, 1H, *J* = 8.0 Hz), 6.44 (dd, 1H, *J* = 1.5, 8.0 Hz), 6.36 (dd, 1H, *J* = 1.5, 8.0 Hz), 6.20 (dd, 1H, *J* = 2.0 Hz), 4.35–4.41 (m, 3H), 4.10 (br s, 1H), 3.31 (dd, 1H, *J* = 3.0, 13.0 Hz), 3.17 (dd, 1H, *J* = 6.5, 13.0 Hz), 2.11 (br s, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 149.3, 141.4, 139.8 (2C), 130.4, 130.3, 129.6 (2C), 123.9 (2C), 123.6 (2C), 112.9 (2C), 110.9, 109.1, 69.5, 47.6, 47.4.

1-(4-Azidophenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (23)

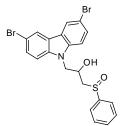

Following Representative Procedure 2, 23 was prepared from epoxide A in 23% yield.

¹H NMR (acetone- d_6 , 500 MHz) δ 8.36 (d, 2H, J = 2.0 Hz), 7.61 (m, 2H), 7.55 (m, 2H), 6.85 (m, 2H), 6.74 (m, 2H), 5.19 (br s, 1H), 4.61 (dd, 1H, J = 4.0, 15.0 Hz), 4.56 (br s, 1H), 4.50 (dd, 1H, J = 8.0, 15.0 Hz), 4.39 (m, 1H), 3.39 (dd, 1H, J = 4.5, 13.0 Hz), 3.25 (dd, 1H, J = 6.5, 13.0 Hz).

¹³C NMR (acetone-*d*₆, 100 MHz) δ 147.7, 141.1, 129.8 (2C), 128.9, 124.5, 124.0 (2C), 120.7 (2C), 114.9 (2C), 112.8 (2C), 112.6, 111.9, 69.6, 48.5, 48.4.

ESI m/z 513.9 ([M+H]⁺, C₂₁H₁₈Br₂N₅O requires 514.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol (24)


Benzenethiol (30 μ L, 0.29 mmol) was added to a solution of epoxide **A** (101.6 mg, 0.27 mmol) in 5.0 mL MeOH at r.t. The reaction mixture was heated to 80 °C and stirred overnight at the same temperature. The reaction was monitored by LC/MS for the consumption of SM. The reaction was cooled, diluted with EtOAc and washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and condensed.

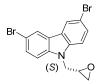
¹H NMR (CDCl₃, 400 MHz) δ 8.03 (d, 2H, *J* = 2.1 Hz), 7.48 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.33–7.20 (m, 7H), 4.33 (dd, 1H, *J* = 4.3, 14.9 Hz), 4.20 (dd, 1H, *J* = 6.9, 14.9 Hz), 4.00–4.12 (m, 1H), 3.05 (dd, 1H, *J* = 5.3, 13.9 Hz), 2.93 (dd, 1H, *J* = 7.2, 13.9 Hz), 2.51 (br s, 1H).

¹³C NMR (CDCl₃, 126 MHz) δ 139.9, 134.5, 130.4, 129.6, 129.4, 127.4, 123.8, 123.4, 112.7, 111.1, 69.3, 48.1, 39.4.

ESI *m/z*: 523.9 ([M+Cl]⁻; C₂₁H₁₇Br₂ClNOS requires 523.9); 533.9 ([M+HCOO]⁻ C₂₂H₁₈Br₂NO₃S requires 533.9).

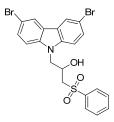
1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(phenylsulfinyl)propan-2-ol (25)

An aqueous solution of NaIO₄ (5.14 g) was added to silica gel (20 g) and shaken until a free-flowing solid was obtained. A mixture of **24** (0.0120 g, 0.0244 mmol) and NaIO₄/silica gel (0.1018 g NaIO₄, 0.122 mmol) were suspended in CH₂Cl₂ (1 mL). The white suspension was heated to 50 °C in a sealed vial for 4 h until TLC showed complete disappearance of starting material. The reaction mixture was subjected to chromatography (SiO₂, 1:9 Hexanes/EtOAc) to afford **25** as a white solid (0.0081 g, 65%, as a 1:1 mixture of diastereomers).


¹H NMR (CDCl₃, 400 MHz) δ 8.13 (d, 2H, *J* = 1.9 Hz, Diast. B), 8.08 (d, 2H, *J* = 1.9 Hz, Diast. A), 7.60–7.30 (m, 7H Diast. A + 7H Diast. B), 7.34 (d, 2H, *J* = 8.8 Hz, Diast. B), 7.16 (d, 2H, *J* = 8.7 Hz, Diast. A), 4.87–4.76

(m, 1H, Diast. B), 4.65–4.55 (m, 1H, Diast. A), 4.45 (dd, 1H, J = 6.4, 15.1 Hz, Diast. B), 4.35 (dd, 1H, J = 6.0, 15.2 Hz, Diast. B), 4.30 (dd, 1H, J = 6.7, 15.2 Hz, Diast. B), 4.24 (dd, 1H, J = 6.3, 15.0 Hz, Diast. A), 3.96 (d, 1H, J = 2.6 Hz, Diast. A), 3.90 (d, 1H, J = 1.7 Hz, Diast. B), 3.15 (dd, 1H, J = 9.3, 13.7 Hz, Diast. A), 2.97 (dd, 1H, J = 8.6, 13.2 Hz, Diast. B), 2.83 (dd, 1H, J = 2.9, 13.2 Hz, Diast. B), 2.39 (dd, 1H, J = 1.7, 13.7 Hz, Diast. A).

¹³C NMR (CDCl₃, 125 MHz) δ 176.3, 175.2, 171.0, 170.8, 162.2, 162.1, 160.65, 160.56, 160.0, 155.4, 155.0, 154.6, 154.5, 154.33, 154.26, 143.46, 143.45, 142.64, 142.61, 96.5, 95.5, 93.5, 91.4, 79.88, 79.87.


ESI m/z: 549.9 ([M + HCOO]⁻ C₂₂H₁₈Br₂NO₄S requires 549.9).

(S)-3,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole ((S)-epoxide A)

To a solution of 3,6-dibromocarbazole (0.2194 g, 0.675 mmol) and triphenylphosphine (0.1770 g, 0.675 mmol) in THF (5.4 mL) was added *S*-(–)-glycidol (44.8 μ L, 0.0500 g, 0.675 mmol). The reaction mixture was cooled in an ice bath and diethyl azodicarboxylate (106.3 μ L, 0.1175 g, 0.675 mmol) was added. The reaction mixture was allowed to warm to room temperature and stir overnight. THF was removed under vacuum and the residue was dissolved in 30 mL EtOAc and washed with brine (3×30 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was subjected to silica gel chromatography using Hexanes/EtOAc to afford white solid as product (0.0514 g, yield 20.0%).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol (26)

To a solution of **24** (0.0113 g, 0.0230 mmol) in 0.5 mL CH₂Cl₂, a solution of *m*CPBA (ca. 77% pure, 0.0129 g, 0.0575 mmol) in 0.5 mL CH₂Cl₂ was added dropwise. The mixture was stirred at room temperature overnight. The crude reaction mixture was neutralized by 9 mL Et₃N and stirred for 30 min, then diluted with 30 mL EtOAc and washed with saturated NaHCO₃ 3×30 mL and brine 1×30 mL. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, 30% EtOAc/Hexanes) to afford **26** as a white solid (0.0120 g, 99.7%).

¹H NMR (CDCl₃, 400 MHz) δ 8.11 (d, 2H, J = 1.9 Hz), 7.79 (dd, 2H, J = 1.2, 8.4 Hz), 7.60–7.70 (m, 1H), 7.47–7.56 (m, 4H), 7.25–7.31 (m, 2H), 4.60–4.76 (m, 1H), 4.38 (d, 2H, J = 6.3 Hz), 3.21–3.31 (m, 2H), 3.15 (dd, 1H, J = 3.0, 14.2 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 139.7, 138.7, 134.6, 129.8, 129.7, 128.0, 123.9, 123.5, 113.1, 110.9, 65.8, 60.0, 48.4.

ESI m/z: 565.9 ([M + HCOO]⁻, C₂₂H₁₈Br₂NO₅S requires 565.9); 543.7 ([M + Na]⁺, C₂₁H₁₇Br₂NNaO₃S requires 543.9).

Optically active versions of 26 were prepared from (R)- or (S)-epoxide A using the same procedures described for 24 and 26.

5-Bromo-2,3-dimethyl-1H-indole (Indole A)

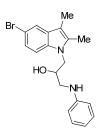
Following a published procedure,⁸ 2-butanone (0.11 mL, 1.278 mmol) was added to a solution of 4-bromophenylhydrazine hydrochloride (0.300 g, 1.342 mmol) in EtOH (3.8 mL). The mixture was heated to reflux for 22 h, concentrated in vacuo, and partitioned between EtOAc and 1N HCl. The organic layer was washed with H_2O and saturated aqueous NaHCO₃, dried over Na₂SO₄, filtered, and

concentrated. The crude residue was purified by chromatography (SiO₂, 0-20% EtOAc/Hexane) to afford indole A as a pink powder (200 mg, 67%).

¹H NMR (CDCl₃, 500 MHz) δ 7.69 (br s, 1H), 7.55 (d, 1H, J = 2.0 Hz), 7.15 (dd, 1H, J = 2.0, 8.5 Hz), 7.09 (dd, 1H, J = 0.5, 8.5 Hz), 2.34 (s, 3H), 2.15 (d, 3H, J = 0.5 Hz).

ESI *m/z* 224.0 ([M+H]⁺, C₁₀H₁₁BrN requires 224.0).

5-Bromo-2,3-dimethyl-1-(oxiran-2-ylmethyl)-1H-indole (Epoxide H)

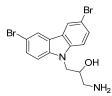


Following Representative Procedure 1, epoxide H was prepared from indole A in 48% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, 1H, *J* = 2.0 Hz), 7.20 (dd, 1H, *J* = 2.0, 8.5 Hz), 7.10 (d, 1H, *J* = 8.5 Hz), 4.35 (dd, 1H, *J* = 3.0, 16.0 Hz), 4.09 (dd, 1H, *J* = 4.5, 16.0 Hz), 3.17 (m, 1H), 2.72 (t, 1H, *J* = 4.5 Hz), 2.35 (dd, 1H, *J* = 3.0, 5.0 Hz), 2.33 (s, 3H), 2.19 (s, 3H).

ESI *m/z* 280.0 ([M+H]⁺, C₁₃H₁₅BrNO requires 280.0).

1-(5-Bromo-2,3-dimethyl-1H-indol-1-yl)-3-(phenylamino)propan-2-ol (27)

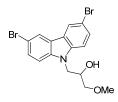

Following Representative Procedure 2, 27 was prepared from epoxide H in 39% yield.

¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, 1H, *J* = 2.0 Hz), 7.17 (dd, 2H, *J* = 7.0, 8.5 Hz), 7.11 (d, 1H, *J* = 8.5 Hz), 6.75 (t, 1H, *J* = 7.0 Hz), 6.60 (d, 2H, *J* = 8.5 Hz), 4.17 (m, 1H), 4.15 (m, 2H), 3.27 (dd, 1H, *J* = 3.0, 8.5 Hz), 3.12 (dd, 1H, *J* = 7.0, 13.0 Hz), 2.34 (s, 3H), 2.19 (s, 3H).

¹³C NMR (CDCl₃, 125 MHz) δ 147.9, 135.1, 134.3, 130.6, 129.6 (2C), 123.6, 120.9, 118.6, 113.7 (2C), 112.5, 110.5, 107.1, 69.9, 47.7, 47.4, 10.7, 9.0.

ESI *m/z* 373.0 ([M+H]⁺, C₁₉H₂₂BrN₂O requires 373.1).

1-Amino-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (28)

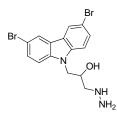


Following a published procedure⁹, epoxide **A** (500mg, 1.3 mmol) was added to a 25 mL scintillation vial followed by NH₃-MeOH (2M, 6.6 mL, 13.12 mmol). The vial was heated to reflux for 24 h. Upon completion the reaction was cooled to room temperature and concentrated under reduced pressure to remove the remaining methanol. The crude residue was purified by chromatography (SiO₂, 0–10% MeOH/CH₂Cl₂) to afford **28** as an amorphous yellow foam.

¹H NMR (CDCl₃, 400 MHz) δ 8.10 (d, 2H, *J* = 1.8 Hz), 7.52 (dd, 2H, *J* = 1.6, 8.7 Hz), 7.31 (d, 2H, *J* = 8.7 Hz), 4.25 (d, 2H, *J* = 4.7 Hz), 3.97 (br s, 1H), 2.83 (br s, 1H), 2.56 (s, 1H), 2.0 (br s, 3H).

ESI *m*/z 396.9 ([M+H]⁺, C₁₅H₁₅Br₂N₂O requires 397.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-methoxypropan-2-ol (29)

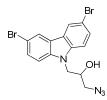

Following a published procedure¹⁰, epoxide **A** (100 mg, 0.262 mmol) and NaOMe (14 mg, 0.262 mmol) were added to a 25 mL scintillation vial followed by the addition of MeOH (1 mL). The reaction was heated to reflux for 1 h. Upon completion, the reaction was cooled to room temperature and concentrated under reduced pressure. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford **29** as a white solid (53 mg, 54%).

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, 2H, *J* = 1.8), 7.56 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.36 (d, 2H, *J* = 1.9, 8.7 Hz), 4.42 (dd, 1H, *J* = 6.7, 15.0 Hz), 4.33 (dd, 1H, *J* = 5.9, 15.0 Hz), 4.20 (m, 1H), 3.41 (dd, 1H, *J* = 4.0, 9.6 Hz), 3.37 (s, 3H), 3.22 (dd, 1H, *J* = 4.8, 9.6 Hz), 2.37 (d, 1H, *J* = 6.1 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 139.8 (2C), 129.4 (2C), 123.7 (2C), 123.4 (2C), 112.6 (2C), 110.9 (2C), 73.4, 69.3, 59.3, 45.8.

ESI *m/z* 411.9 ([M+H])⁺, C₁₆H₁₆Br₂NO₂ requires 412.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-hydrazinylpropan-2-ol (30)

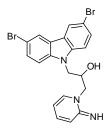


Following a literature procedure¹¹, epoxide **A** (100 mg, 0.262 mmol) was added to 10 mL of hydrazine hydrate and heated to 100 °C for 1 h. Upon completion, the reaction was cooled to room temperature and concentrated in vacuo. The material was partitioned between EtOAc and H₂O. The aqueous layer was washed $3 \times$ EtOAc. The organic extract was combined and washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude material was used without further purification.

¹H NMR (CDCl₃, 400 MHz,) δ 8.12 (d, 2H, *J* = 1.9 Hz), 7.51 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.43 (d, 2H, *J* = 8.7 Hz), 4.47 (dd, 1H, *J* = 8.2, 17.4 Hz), 4.41–4.23 (m, 3H), 3.23 (m, 1H), 1.95 (s, 3H), 1.75 (s, 1H).

ESI *m*/*z* 411.9 ([M+H]⁺, C₁₃H₁₆Br₂N₃O requires 412.0).

1-Azido-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (31)

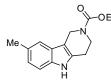


Following a literature procedure^{xi}, epoxide **A** (100 mg, 0.262 mmol) was added to a 25 mL scintillation vial , followed by the addition of NaN₃ (22 mg, 0.34 mmol), NH₄Cl (18 mg, 0.34 mmol) in 800 μ L of EtOH and 200 μ L of H₂O and heated to 80 °C overnight. Upon completion the reaction was cooled to room temperature and concentrated under reduced pressure. The crude mixture was partitioned between H₂O and EtOAc, and then washed 3×H₂O, brine, dried over MgSO₄, and concentrated in vacuo. The crude material was used without further purification.

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (s, 2H), 7.56 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.39–7.28 (m, 2H), 4.34 (d, 2H, *J* = 6.1 Hz), 4.24 (d, 1H, *J* = 5.1 Hz), 3.48 (dd, 1H, *J* = 4.3, 12.5 Hz), 3.33 (dd, 1H, *J* = 5.6, 12.5 Hz), 2.10 (s, 1H).

ESI *m/z* 422.9 ([M+H]⁺, C₁₅H₁₃Br₂N₄O requires 423.0).

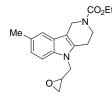
1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(2-iminopyridin-1(2H)-yl)propan-2-ol (32)


Following Representative Procedure 2, **32** was prepared from epoxide **A**, but using a reaction time of 2 d at 80 °C. The crude product was used without further purification.

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (2H, *J* = 1.9 Hz), 7.55 (dd, 2H, *J* = 1.9, 8.8 Hz), 7.35 (d, 2H, *J* = 8.7 Hz), 6.83 (t, 1H, *J* = 7.6 Hz), 6.37 (d, 1H, *J* = 6.8 Hz), 6.32 (d, 1H, *J* = 9.1 Hz), 5.65 (t, 1H, *J* = 6.7 Hz), 4.39 (dm, 5H), 3.54 (d, 1H, *J* = 13.9 Hz).

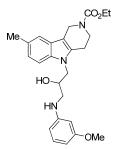
¹³C NMR (*d*₆-DMSO, 126 MHz) δ 159.8, 139.8, 139.6, 134.9, 128.7, 123.2, 123.0, 119.8, 112.3, 111.3, 102.5, 68.4, 55.7, 47.5.

ESI *m*/z 473.9 ([M+H]⁺, C₂₀H₁₈Br₂N₃O requires 474.0).


Ethyl 8-Methyl-3,4-dihydro-1H-pyrido[4,3-b]indole-2(5H)-carboxylate (Carboline A)

Following a literature procedure¹², *p*-tolylhydrazine hydrochloride (0.500 g, 3.15 mmol) and 1-carbethoxy-4-piperidone (0.18 mL, 1.17 mmol) were suspended in EtOH (0.880 mL) and heated to reflux for 2 h. The reaction mixture was removed from heat and allowed to stand overnight at ambient temperature. The resulting mixture was filtered and washed with 50% aqueous EtOH to afford carboline **A** as a beige powder (259 mg, 86%).

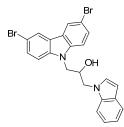
¹H NMR (CDCl₃, 500 MHz) δ 7.73 (br s, 1H), 7.23 (s, 1H), 7.18 (d, 1H, *J* = 8.0 Hz), 6.96 (d, 1H, *J* = 8.0 Hz), 4.64 (br s, 2H), 4.18 (q, 2H, *J* = 7.0 Hz), 3.85 (m, 2H), 2.81 (br s, 2H), 2.42 (s, 3H), 1.28 (t, 3H, *J* = 7.0 Hz).


Ethyl 8-Methyl-5-(oxiran-2-ylmethyl)-3,4-dihydro-1H-pyrido[4,3-b]indole-2(5H)-carboxylate (Epoxide I)

Carboline A (0.025 g, 0.097 mmol) was dissolved in anhydrous degassed THF and was cooled to -78 °C. A solution of *n*-BuLi (0.082 mL, 1.78 M in hexanes) was added dropwise and the reaction was stirred at -78 °C for 30 min. Epibromohydrin (0.016 mL, 0.194 mmol) was added and the reaction was allowed to warm slowly to ambient temperature. After 3.5 h, epibromohydrin (0.008 mL, 0.097 mmol) was added and the reaction was stirred overnight at ambient temperature. Upon completion, the reaction was quenched with saturated aqueous NH₄Cl and the mixture was extracted with EtOAc (3×). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford epoxide I (15 mg, 49%).

¹H NMR (CDCl₃, 500 MHz) δ 7.19 (m, 1H), 7.00 (d, 1H, *J* = 8.5 Hz), 4.65 (br s, 2H), 4.32 (dd, 1H, *J* = 3.0, 15.5 Hz), 4.18 (q, 2H, *J* = 7.0 Hz), 4.08 (dd, 1H, *J* = 5.0, 15.5 Hz), 3.85 (m, 2H), 3.18 (m, 1H), 2.81 (br s, 2H), 2.73 (dd, 1H, *J* = 4.0, 4.5 Hz), 2.44 (s, 3H), 2.38 (br s, 1H), 1.29 (t, 3H, *J* = 7.0 Hz).

Ethyl 5-(2-Hydroxy-3-(3-methoxyphenylamino)propyl)-8-methyl-3,4-dihydro-1H-pyrido[4,3-b]indole-2(5H)-carboxylate (33)

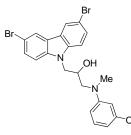


Following a literature procedure¹³, LiBr (0.001 g, 0.010 mmol) and *m*-anisidine (0.011 mL, 0.102 mmol) were added to epoxide I (0.032 g, 0.102 mmol) and stirred vigorously at ambient temperature overnight. Upon completion the reaction was partitioned between EtOAc/H₂O, and the organic layer was concentrated to an orange oil. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford **33** (30 mg, 67%).

¹H NMR (CDCl₃, 500 MHz) δ 7.23 (br s, 1H), 7.17 (d, 1H, J = 8.0 Hz), 7.05 (dd, 1H, J = 8.0 Hz), 6.97 (d, 1H, J = 8.5 Hz), 6.28 (dd, 1H, J = 1.5, 8.0 Hz), 6.19 (d, 1H, J = 8.0 Hz), 6.11 (br s, 1H), 4.64 (br s, 2H), 4.18 (m, 1H), 4.16 (q, 2H, J = 7.5 Hz), 4.12 (m, 1H), 3.80 (br s, 2H), 3.71 (s, 3H), 3.23 (dd, 1H, J = 3.5, 13.0 Hz), 3.07 (dd, 1H, J = 7.5, 13.0 Hz), 2.83 (m, 1H), 2.76 (m, 1H), 2.42 (s, 3H), 1.27 (t, 3H, J = 7.0 Hz).

ESI *m/z* 438.2 ([M+H]⁺, C₂₅H₃₂N₃O₄ requires 438.2).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(1H-indol-1-yl)propan-2-ol (34)

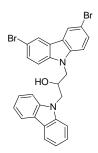


Following a literature procedure¹⁴, indole (28 mg, 2.36 mmol) was added to a suspension of NaH (7 mg, 2.75 mmol) in 1 mL DMF at 0 °C. The mixture was allowed to stir at 0 °C for 10 min and then ambient temperature for 30 min. A solution of epoxide **A** (75 mg, 0.2 mmol) in 4 mL of DMF was added and the reaction mixture was heated to 60 °C for 3 h. Upon completion, the reaction was cooled to room temperature and partitioned between diethyl ether and H₂O. The aqueous layer was washed $3 \times Et_2O$. The organic extracts were combined and washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford the desired alcohol as a white foam (53 mg, 54%).

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 1.9 Hz),7.64 (d, 1H, *J* = 7.8 Hz), 7.50 (dd, 2H, *J* = 1.9, 8.7), 7.23–7.08 (m, 6H), 6.55 (d, 1H, *J* = 3.2 Hz), 4.57–4.47 (m, 1H), 4.36–4.19 (m, 4H), 1.89 (d, 1H, *J* = 3.8 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 139.7 (2C), 136.3, 129.5 (2C), 128.9, 128.4, 123.8 (2C), 123.5 (2C), 122.3, 121.6, 120.1 112.8 (2C), 110.8 (2C), 109.3, 102.6, 70.5, 50.3, 47.2.

ESI *m*/z 496.9 ([M+H])⁺, C₂₃H₁₉Br₂N₂O₂ requires 497.0).

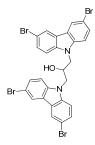

Following Representative Procedure 2, 35 was prepared from epoxide A in 60% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 1.9 Hz), 7.53 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.30 (d, 2H, *J* = 8.7 Hz), 7.11 (t, 1H, *J* = 8.2 Hz), 6.36–6.29 (m, 2H), 6.23 (t, 1H, *J* = 2.3 Hz), 4.39 (s, 1H), 4.37–4.31 (m, 2H), 3.68 (s, 3H), 3.37 (s, 1H), 2.93 (s, 3H), 2.25 (d, 1H, *J* = 2.8 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 160.9, 151.3, 139.8 (2C), 130.2 (2C), 129.4 (2C), 123.7, 123.3 (2C), 112.6 (2C), 111.0 (2C), 106.5, 102.9, 100.2, 69.1, 58.0, 55.2, 47.4, 39.9.

ESI m/z 517.0 ([M+H])⁺, C₂₃H₂₃Br₂N₂O₂ requires 517.0).

1-(9H-Carbazol-9-yl)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (36)

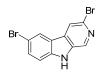

Carbazole (0.026 g, 0.154 mmol) was dissolved in DMF (1.5 mL) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.007 g, 0.169 mmol) was added and the reaction was stirred for 1 h at 0 °C. Epoxide **A** (0.059 g, 0.154 mmol) was added and the reaction was stirred at ambient temperature for 21 h. Upon consumption of the starting material by TLC, the reaction was partitioned between EtOAc and H₂O. The aqueous layer was washed 3×EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–20% EtOAc/Hexane) to afford **36** (41 mg, 48%).

¹H NMR (acetone- d_6 , 400 MHz) δ 8.36 (m, 2H), 8.14 (d, 2H, J = 8.0 Hz), 7.63 (d, 2H, J = 8.4 Hz), 7.55 (s, 2H), 7.42 (dt, 2H, J = 1.2, 7.2 Hz), 7.20 (dt, 2H, J = 0.8, 7.2 Hz), 4.76 (m, 1H), 4.64–4.72 (m, 4H), 2.77 (br s, 1H).

¹³C NMR (acetone-*d*₆, 100 MHz) δ 142.0 (2C), 141.0 (2C), 129.8 (2C), 126.6 (2C), 124.5 (2C), 124.1 (2C), 123.8 (2C), 121.0 (2C), 119.9 (2C), 112.7 (2C), 112.6 (2C), 110.5 (2C), 70.3, 48.4, 48.1.

ESI m/z 591.0 ([M+CO₂H]⁻, C₂₈H₂₁Br₂N₂O₃ requires 591.0).

1,3-Bis(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (37)


Following a procedure analogous to that used to prepare 36, 37 was prepared in 34% yield.

¹H NMR (acetone-*d*₆, 400 MHz) δ 8.36 (d, 4H, *J* = 2.0 Hz), 7.64 (d, 4H, *J* = 8.8 Hz), 7.56 (dd, 4H, *J* = 2.0, 8.8 Hz), 4.72 (m, 5H), 2.78 (br s, 1H).

¹³C NMR (acetone-*d*₆, 100 MHz) δ 141.2 (4C), 129.8 (4C), 124.6 (4C), 124.1 (4C), 112.9 (4C), 112.7 (4C), 70.3, 48.3 (2C).

ESI m/z 747.0 ([M+CO₂H]⁻, C₂₈H₁₉Br₄N₂O₃ requires 746.8).

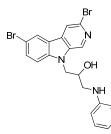
3,6-Dibromo-β-carboline (Carboline B)



Following a literature procedure¹⁵, β -carboline (0.100 g, 0.595 mmol) and SiO₂ (1.00 g) were suspended in CH₂Cl₂ (15 mL). *N*-Bromosuccinimde (0.212 g, 1.189 mmol) was dissolved in CH₂Cl₂ (15 mL) and the solution was added to the carboline mixture slowly via syringe in the absence of light. The reaction was stirred at ambient temperature for 2.5 h, after which the silica gel was filtered off and washed 3×CH₂Cl₂. The combined organic layer was extracted with 0.1 M NaOH and saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by chromatography (SiO₂, 0–100% EtOAc/Hexane) to afford the desired 3,6-dibrominated carboline (15 mg, 8%) and the tribrominated carboline (36 mg, 19%).

¹H NMR (*d*₆-DMSO, 500 MHz) δ 8.72 (s, 1H), 8.58 (d, 1H, *J* = 1.5 Hz), 8.48 (s, 1H), 7.70 (dd, 1H, *J* = 1.5, 9.0 Hz), 7.58 (d, 1H, *J* = 9.0 Hz).

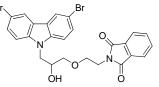
ESI *m/z* 326.9 ([M+H]⁺, C₁₁H₇Br₂N₂ requires 326.9).


3,6-Dibromo-9-(oxiran-2-ylmethyl)-9H-pyrido[3,4-b]indole (Epoxide J)

Following Representative Procedure 1, epoxide J was prepared from carboline B in 73% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.62 (d, 1H, J = 0.8 Hz), 8.17 (d, 1H, J = 2.0 Hz), 8.02 (d, 1H, J = 1.2 Hz), 7.69 (dd, 1H, J = 2.0, 8.8 Hz), 7.41 (d, 1H, J = 8.8 Hz), 5.34 (br s, 1H), 4.73 (dd, 1H, J = 2.4, 16.0 Hz), 4.27 (dd, 1H, J = 5.2, 16.0 Hz), 3.32 (m, 1H), 2.83 (dd, 1H, J = 4.0, 4.4 Hz), 2.49 (dd, 1H, J = 2.4, 4.4 Hz).

ESI m/z 382.9 ([M+H]⁺, C₁₄H₁₁Br₂N₂O requires 382.9).

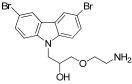

Following Representative Procedure 2, 38 was prepared from epoxide J in 14% yield after purification by preparative TLC.

¹H NMR (CDCl₃, 500 MHz) δ 8.64 (s, 1H), 8.18 (d, 1H, J = 2.0 Hz), 7.99 (s, 1H), 7.66 (dd, 1H, J = 1.5, 9.0 Hz), 7.40 (d, 1H, J = 9.0 Hz), 7.18 (dd, 2H, J = 7.5 Hz), 6.76 (t, 1H, J = 7.5 Hz), 6.63 (d, 2H, J = 8.5 Hz), 5.33 (br s, 1H), 4.38–4.49 (m, 3H), 3.37 (dd, 1H, J = 4.0, 13.0 Hz), 3.21 (dd, 1H, J = 7.0, 13.0 Hz).

¹³C NMR (CDCl₃, 125 MHz) δ 147.7, 141.2, 137.0, 132.6, 132.5, 130.9, 130.1, 129.7 (2C), 125.0, 122.0, 119.0, 118.6, 113.8 (2C), 113.4, 111.9, 69.6, 48.1, 47.9.

ESI *m/z* 475.9 ([M+H]⁺, C₂₀H₁₈Br₂N₃O requires 476.0).

2-(2-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl)isoindoline-1,3-dione (39)

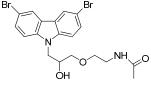


Sodium hydride dispersion (31.6 mg, 0.79 mmol) was added to a solution of *N*-(2-hydroxyethyl)-phthalimide (153.7 mg, 0.80 mmol) in anhydrous THF (1.2 mL, 0.67 M). The suspension is stirred for 15 min before the addition of epoxide **A**. The reaction was stirred at room temperature for 5 min and then at 60 °C for 1 h. The cooled reaction was diluted with EtOAc and washed with water. The aqueous layer was extracted and the combined organics were filtered over a celite pad to afford **39** (44%) which was used without further purification.

¹H NMR (CDCl₃, 500 MHz) δ 8.12 (s, 2H), 7.85 (s, 2H), 7.72 (m, 2H), 7.55 (d, 2H, J = 8.5 Hz), 7.33 (d, 2H, J = 8.7 Hz), 4.64 (d, 1H, J = 16.1 Hz), 4.27 (d, 1H), 3.88 (m, 4H), 3.31 (br s, 1H), 2.80 (m, 1H), 2.48 (m, 1H), 2.04 (s, 1H).

ESI m/z 614.9 ([M+HCOO]⁻, C₂₆H₂₁Br₂N₂O₆ requires 615.0).

1-(2-Aminoethoxy)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (40)

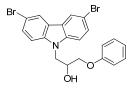


Hydrazine hydrate (400 μ L, 8.22 mmol) was added to a solution **39** (53 mg, 0.093 mmol) in ethanol (2.0 mL, 0.046 M). The reaction was stirred overnight, condensed and purified (SiO₂, 5–10% MeOH/CH₂Cl₂) to afford **40**.

¹H NMR (CDCl₃, 500 MHz) δ 8.11 (s, 2H), 7.53 (dd, 2H, *J* = 1.8, 8.7 Hz), 7.38 (d, 2H, *J* = 8.5 Hz), 4.37 (dm, 5H), 4.05 (t, 1H, *J* = 6.8 Hz), 2.84 (m, 2H), 2.62 (m, 1H).

ESI m/z 440.9 ([M+H]⁺, C₁₇H₁₉Br₂N₂O₂ requires 441.0).

N-(2-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropoxy)ethyl)acetamide (41)



Triethylamine (33.5 μ L, 0.26 mmol) and acetic anhydride (17 μ L, 0.18 mmol) were added to a solution of **40** (71 mg, 0.16 mmol) in THF (3.0 mL, 0.053 M). The reaction was stirred overnight. The reaction mixture was diluted with EtOAc, washed with water, dried over Na₂SO₄, filtered and condensed. The crude mixture was subjected to flash chromatography (SiO₂, 5% MeOH/CH₂Cl₂).

¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, 2H, *J* = 1.7 Hz), 7.55 (dd, 2H, *J* = 1.8, 8.7 Hz), 7.34 (d, 2H, *J* = 9.1 Hz), 5.78 (br s, 1H), 4.35 (ddd, 3H, *J* = 6.2, 6.8 Hz), 4.22 (m, 1H), 3.46 (m, 4H), 3.33 (dd, 1H, *J* = 5.4, 9.7 Hz), 2.80 (br s, 1H), 1.98 (s, 3H).

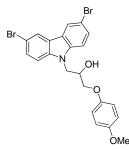
ESI m/z 482.9 ([M+1]⁺, C₁₉H₂₁Br₂N₂O₃ requires 483.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-ol (42)

Following Representative Procedure 1, 42 was prepared from dibromocarbazole and phenoxymethyloxirane in 61% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, 2H, J = 1.9 Hz), 7.51 (dd, 2H, J = 1.9, 8.7 Hz), 7.36 (d, 2H, J = 8.8 Hz), 7.127–7.32 (m, 2H), 7.00 (t, 1H, J = 7.3 Hz), 6.87 (dd, 2H, J = 0.8, 8.9 Hz), 4.58 (dd, 1H, J = 7.9, 16.7 Hz), 4.41–4.49 (m, 2H), 4.00 (dd, 1H, J = 4.4, 9.6 Hz), 3.89 (dd, 1H, J = 4.5, 9.5 Hz), 2.38 (d, 1H, J = 5.7 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 158.0, 139.8, 129.8, 129.4, 123.7, 123.4, 121.8, 114.6, 112.7, 110.8, 69.2, 45.9.

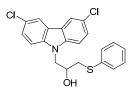

ESI *m/z* 517.9 ([M+HCOO]⁻, C₂₂H₁₈Br₂NO₄ requires 518.0).

(S)-42: $[\alpha] = +16.8$ (c 3.0, acetone).

(*R*)-42: $[\alpha] = -14.9$ (*c* 3.0, acetone).

Optically active versions of **42** were synthesized from commercially available optically active phenoxymethyl oxirane using the same procedure as described for **42**.

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(4-methoxyphenoxy)propan-2-ol (43)

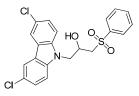

Following Representative Procedure 1, **43** was prepared in 47% yield from dibromocarbazole and (*p*-methoxyphenyl)-glycidyl ether with NaH as the base.

¹H NMR (CDCl₃, 500 MHz) δ 8.12 (d, 2H, *J* = 2.0 Hz), 7.50 (dd, 2H, *J* = 2.0, 8.5 Hz), 7.34 (d, 2H, *J* = 8.5 Hz), 6.81 (m, 2H), 6.79 (m, 2H), 4.56 (m, 1H), 4.42 (m, 3H), 3.93 (dd, 1H, *J* = 4.5, 9.5 Hz), 3.81 (dd, 1H, *J* = 4.5, 9.5 Hz), 3.76 (s, 3H), 2.39 (d, 1H, *J* = 6.0 Hz).

¹³C NMR (acetone-*d*₆, 100 MHz) δ 155.2, 153.8, 141.2 (2C), 129.8 (2C), 124.5 (2C), 124.0 (2C), 116.4 (2C), 115.5 (2C), 112.9 (2C), 112.5 (2C), 71.1, 69.8, 55.9, 47.4.

ESI *m/z* 547.9 ([M+CO₂H]⁻, C₂₃H₂₀Br₂NO₅ requires 548.0).

1-(3,6-Dichloro-9H-carbazol-9-yl)-3-(phenylthio)propan-2-ol (44)


Prepared analogously to 24 affording 44 as a white solid (0.0293 g, 99.0%).

¹H NMR (CDCl₃, 400 MHz) δ 7.93 (d, 2H, *J* = 1.8 Hz), 7.46–7.14 (m, 9H), 4.41 (dd, 1H, *J* = 4.1, 15.0 Hz), 4.28 (dd, 1H, *J* = 7.0, 15.0 Hz), 4.20–4.06 (m, 1H), 3.09 (dd, 1H, *J* = 5.2, 13.9 Hz), 2.97 (dd, 1H, *J* = 7.2, 13.8 Hz), 2.55 (s, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 139.7, 134.5, 130.3, 129.5, 127.3, 126.8, 125.4, 123.3, 120.4, 110.6, 69.3, 48.2, 39.4.

ESI *m/z* 446.0 ([M + HCOO]⁻, C₂₂H₁₈Cl₂NO₃S requires 446.0); 436.0 ([M + Cl]⁻, C₂₁H₁₇Cl₃NOS requires 436.0).

1-(3,6-Dichloro-9H-carbazol-9-yl)-3-(phenylsulfonyl)propan-2-ol (45)

Following the procedure given for 26, 45 was prepared from 44 in 91% yield.

¹H NMR (CDCl₃, 400 MHz) δ 7.96 (d, 2H, J = 2.0 Hz), 7.80 (d, 2H, J = 7.3 Hz), 7.66 (t, 1H, J = 7.5 Hz), 7.52 (t, 1H, J = 7.9 Hz), 7.40 (dd, 2H, J = 2.0, 8.7 Hz), 7.31 (d, 2H, J = 8.7 Hz), 4.67 (m, 1H), 4.39 (d, 2H, J = 6.3 Hz), 3.29 (d, 1H, J = 2.9 Hz), 3.28 (dd, 1H, J = 8.3, 14.3 Hz), 3.17 (dd, 1H, J = 3.0, 14.2 Hz).

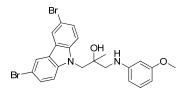
¹³C NMR (CDCl₃, 100 MHz) δ 139.6, 138.8, 134.5, 129.8, 128.0, 127.0, 125.7, 123.5, 120.5, 110.5, 65.8, 60.0, 48.5.

ESI *m/z* 477.9 ([M + HCOO]⁻; C₂₂H₁₈Cl₂NO₅S requires 478.0).

1-Chloro-3-(3-methoxyphenylamino)-2-methylpropan-2-ol (Chlorohydrin B)

m-Anisidine (0.18 mL, 1.62 mmol) was added to 2-chloromethyl-2-methyl oxirane (0.154 mL, 1.62 mmol) in acetic acid (2 mL) and the mixture was heated to 75 °C. Upon completion the reaction was neutralized with saturated sodium bicarbonate to pH 7, then extracted $3 \times EtOAc$, washed with brine and dried with MgSO₄ filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–25% EtOAc/Hexane) to afford chlorohydrin **B** (332 mg, 89%).

¹H NMR (CDCl₃, 400 MHz) δ 7.08 (t, 1H, *J* = 8.1 Hz), 6.29 (m, 2H), 6.23 (t, 1H, *J* = 2.3 Hz), 3.95 (s, NH), 3.77 (s, 3H), 3.64 (d, 1H, *J* = 11.0 Hz), 3.56 (d, 1H, *J* = 13.1 Hz), 3.19 (d, 1H, *J* = 13.2 Hz), 2.31 (apparent d, OH), 1.36 (s, 3H).

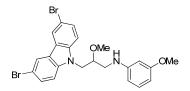

ESI *m*/z 230.1 ([M+H]⁺, C₁₁H₁₇ClNO₂ requires 230.1).

3-Methoxy-N-((2-methyloxiran-2-yl)methyl)aniline (Epoxide K)

Chlorohydrin **B** (0.166g, 0.722 mmol) was dissolved in dioxane (1 mL) and added to a solution of KOH (0.168 mg, 3.0 mmol). The reaction was followed by TLC (20% EtOAc/Hexane) until the starting material was consumed and the less polar product was obtained. After aqueous workup, the crude epoxide **K** was used without purification.

¹H NMR (CDCl₃, 400 MHz) δ 7.07 (t, 1H, *J* = 8.1 Hz), 6.27 (dd, 1H, *J* = 0.8, 8.2 Hz), 6.22 (dd, 1H, *J* = 0.8, 8.2 Hz), 6.16 (t, 1H, *J* = 2.3 Hz), 3.83 (s, 1H), 3.32 (br s, 2H), 2.82 (d, 1H, *J* = 4.5 Hz), 2.63 (d, 1H, *J* = 4.5 Hz).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3-methoxyphenylamino)-2-methylpropan-2-ol (46)

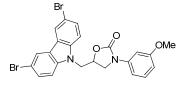

Following Representative Procedure 1, 46 was prepared from epoxide K in 83% yield using NaH as base.

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (s, 2H), 7.53 (d, 2H, *J* = 8.9 Hz), 7.42 (d, 2H, *J* = 8.4 Hz), 7.09 (t, 1H, *J* = 8.4 Hz), 6.33 (d, 1H, *J* = 6.3 Hz), 6.27 (d, 1H, *J* = 6.3 Hz), 6.18 (s, 1H), 4.41 (d, 1H, *J* = 15.3 Hz), 4.32 (d, 1H, *J* = 15.3 Hz), 3.74 (s, NH), 3.49 (s, 3H), 3.28 (d, 1H, 12.4 Hz), 3.22 (d, 1H, 12.4 Hz), 2.03 (s, OH), 1.33 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 149.8, 140.6 (2C), 130.4 (2C), 129.4 (2C), 123.8 (2C), 123.2 (2C), 112.8, 111.8 (2C), 106.9, 103.8, 99.8, 75.0, 55.4, 52.5, 51.5, 25.1.

ESI m/z 516.9 ([M+H]⁺, C₂₃H₂₃Br₂N₂O₂ requires 517.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-methoxypropyl)-3-methoxyaniline (47)


Sodium hydride (9.0 mg, 0.23 mmol) was added to a stirring solution of **7** (99.3 mg, 0.20 mmol) in DMF (0.5 mL, 0.39 M). The solution was stirred at room temperature for 70 min before the dropwise addition of a solution of methyl iodide (14 mL, 0.22 mol) in DMF (1.0 mL). The reaction was monitored by LC/MS for the consumption of SM and the appearance of *O*- and *N*-methyl products. After 2.5 h of stirring at ambient temperature, conversion was about 30% and about 5% *N*-methyl product had formed. The reaction was stopped when an increase of *N*-Me to *O*-Me had been observed and conversion was about 50%. The brown solution was diluted with EtOAc and washed several times with water and brine. The organic layer was dried over Na_2SO_4 , filtered and condensed. The mixture was purified by preparative TLC (30% EtOAc/hexanes) to afford **7**.

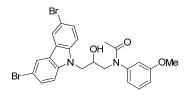
¹H NMR (CDCl₃, 400 MHz) δ 8.13 (s, 2H), 7.51 (dd, 2H, J = 1.8, 8.8 Hz), 7.31 (d, 2H, J = 8.7 Hz), 7.09 (t, 1H, J = 8.2 Hz), 6.33 (dd, 1H, J = 2.3, 8.3 Hz), 6.21 (dd, 1H, J = 2.1, 8.0 Hz), 6.12 (m, 1H), 4.42 (m, 1H), 4.03 (br s, 1H), 3.85 (m, 1H), 3.74 (s, 3H), 3.29 (s, 3H), 3.09 (m, 2H).

¹³C NMR (CDCl₃, 126 MHz) δ 161.0, 149.4, 139.8, 130.4, 129.5, 123.8, 123.5, 112.7, 110.9, 106.7, 103.6, 99.7, 78.2, 58.3, 55.3, 45.3, 44.3.

ESI m/z 516.9 ([M+1]⁺ for C₂₃H₂₂Br₂N₂O₂ requires 517.0).

5-((3,6-Dibromo-9H-carbazol-9-yl)methyl)-3-(3-methoxyphenyl)oxazolidin-2-one (48)

Methyl chloroformate (10 μ L, 0.13 mmol) was added to a stirring solution of **7** (55.0 mg, 0.11 mmol) and indium powder (3.5 mg, 0.030 mmol) in acetonitrile (3.0 mL), and the reaction mixture was stirred overnight at ambient temperature. An additional 3.1 mg (0.027 mmol) of indium and 20 μ L (2.6 eq.) of methyl chloroformate were added. After several hours, the reaction was diluted with EtOAc, washed with water, and then brine. The organic layer was dried over Na₂SO₄, filtered and concentrated. The methyl carbonate was purified via chromatography (SiO₂, 20–40% EtOAc/Hexanes).

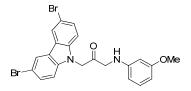

Sodium methoxide (3.0 mL) was added to a solution of carbonate (21.3 mg, 0.038 mmol) and methanol (1.0 mL). After an hour at ambient temperature the solution was diluted with water and extracted with EtOAc. The organic layer was washed with water and brine and condensed to afford **48**.

¹H NMR (acetone- d_6 , 500 MHz) δ 8.40 (s, 2H), 7.78 (d, 2H, J = 8.5 Hz), 7.64 (d, 2H, J = 8.9 Hz), 7.23–7.28 (m, 2H), 7.05 (d, 1H, J = 8.3 Hz), 6.70 (d, 1H, J = 8.3 Hz), 5.24–5.31 (m, 1H), 5.00 (dd, 1H, J = 7.9, 15.7 Hz), 4.91 (dd, 1H, J = 3.2, 15.8 Hz), 4.38 (t, 1H, J = 9.3 Hz), 4.05 (m, 1H), 3.78 (s, 3H).

¹³C NMR (acetone-*d*₆, 126 MHz) δ 160.4, 153.9, 140.3, 140.2, 129.8, 129.4, 124.0, 123.5, 112.4, 112.1, 110.3, 109.0, 104.4, 71.9, 54.9, 47.9, 46.6.

ESI m/z 528.9 ([M+1]⁺ for C₂₃H₁₉Br₂N₂O₃ calculated 529.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)acetamide (49)

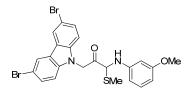


Following a literature procedure¹⁶, Et₃N (14 μ L, 0.10 mmol) and acetyl chloride (8 μ L, 0.11 mmol) were added to a heterogeneous mixture of substrate **7** (53 mg, 0.11 mmol) and dibutyltin oxide (5.5 mg, 0.022 mmol) in anhydrous toluene (1.5 mL). The reaction vessel was purged with nitrogen, sealed and heated under microwave radiation to 150 °C for 9 min. The reaction was monitored by LC/MS until all starting material had been consumed. The heterogeneous solution was filtered under vacuum to yield a white solid. The crude product was used without purification.

¹H NMR (CDCl₃, 500 MHz) δ 8.09 (d, 2H, J = 1.6 Hz), 7.52 (dd, 2H, J = 1.8, 8.7 Hz), 7.29 (d, 2H, J = 8.8 Hz), 7.26 (t, 1H, J = 8.2 Hz), 6.86 (dd, 1H, J = 2.5, 8.4 Hz), 6.68 (dd, 1H, J = 1.3, 7.7 Hz), 6.62 (s, 1H,), 4.33–4.40 (m, 1H), 4.29 (dd, 2H, J = 2.6, 6.0 Hz), 3.94 (d, 1H, J = 4.1 Hz), 3.76 (s, 3H), 3.51 (dd, 1H, J = 2.3, 14.0 Hz), 1.9 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 173.6, 160.9, 144.5, 139.9, 131.0, 129.4, 123.8, 123.4, 119.7, 113.9, 113.5, 112.6, 111.1, 70.9, 55.7, 55.2, 46.0, 22.8.

ESI m/z 544.9 ([M+1]⁺ for C₂₄H₂₂Br₂N₂O₃ requires 545.0).

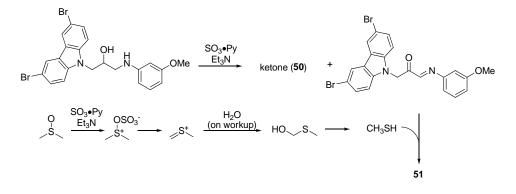


Et₃N (1.65 mL, 11.8 mmol) was added to a stirring solution of **7** (1.02 g, 2.02 mmol) in DMSO (21 mL). The solution was stirred for 30 min before addition of sulfur trioxide pyridine complex (0.659 g, 4.14 mmol). After stirring overnight, additional Et₃N (1.0 mL, 7.17 mmol) was added, followed by sulfur trioxide pyridine complex (0.663 mg, 4.17 mmol) 1 h later. After stirring for 1 h, the orange solution was diluted with ~ 150 mL EtOAc and washed several times with water and then brine. The organic layer was dried over Na₂SO₄, filtered and concentrated to yield brown foam. Flash chromatography (SiO₂, 100% CH₂Cl₂ + 0.2% Et₃N) provided a higher R_f product (methyl thioether **51**, 18%) and a lower R_f ketone (**50**, 40%).

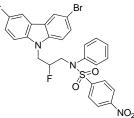
Major product (**50**): ¹H NMR (CDCl₃, 400 MHz) δ 8.18 (d, 2H, *J* = 1.9 Hz), 7.56 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.11 (d, 2H, *J* = 8.8 Hz), 7.06 (t, 1H, *J* = 8.1 Hz), 6.30 (dd, 1H, *J* = 2.3, 8.2 Hz), 6.07 (dd, 1H, *J* = 2.0, 8.0 Hz), 6.11 (t, 1H, *J* = 2.2 Hz), 5.08 (s, 2H,), 4.41 (t, 1H, *J* = 4.8 Hz), 3.90 (d, 2H, *J* = 5.1 Hz), 3.72 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 202.9, 161.1, 147.9 (2C), 139.5, 130.6 (2C), 129.9 (2C), 124.1(2C), 123.9(2C), 113.5, 110.1(2C), 103.7, 99.3, 55.4, 51.9, 51.0.

ESI m/z 500.9 ([M+1]⁺ for C₂₂H₁₈Br₂N₂O₂ requires 501.0).


Minor product (**51**): ¹H NMR (CDCl₃, 400 MHz): δ 8.16 (d, 2H, J = 2.0 Hz), 7.55 (dd, 2H, J = 1.7, 8.8 Hz), 7.25 (d, 2H, J = 8.8 Hz), 7.12 (t, 1H, J = 8.4 Hz), 6.39 (dd, 1H, J = 2.2, 8.2 Hz), 6.33 (dd, 1H, J = 2.2, 8.0 Hz), 6.29 (t, 1H, J = 2.2 Hz), 5.50 (d, 1H, J = 18.0 Hz), 5.22 (d, 1H, J = 18.4 Hz), 5.25 (d, 1H, J = 8.0 Hz), 4.50 (d, 1H, J = 8.0 Hz, exchangeable), 3.76 (s, 3H), 1.74 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 193.2, 160.9, 143.9 (2 C), 139.8(2C), 130.4, 129.8(2C), 124.1, 123.7(2C), 113.4(2C), 110.3(2C), 107.8, 104.7, 101.0, 60.3, 55.4, 48.9, 9.0.


ESI m/z 498.9 [M-SMe+H]⁺ ([M-SMe+H]+ for C₂₃H₂₀Br₂N₂O₂S requires 499.0.

HRMS *m/z*: 546.9675 [M+H]⁺ ([M+H]⁺ for C₂₃H₂₀Br₂N₂O₂S requires 545.9612).

Proposed mechanism for generation of 51:

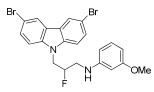
N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-nitro-N-phenylbenzenesulfonamide (Ns-C)

Prepared from epoxide A and Ns-aniline via Representative Procedures 3 and 4. Crude mixture was purified by chromatography (SiO₂, 40% EtOAc/Hexanes + 0.1% Et₃N) to afford Ns-C in 60% yield.

¹H NMR (acetone- d_6 , 400 MHz) δ 8.37 (m, 2H), 7.90 (m, 2H), 7.68 (m, 1H), 7.53–7.60 (m, 6H), 7.32–7.40 (m, 5H), 5.03 (dm, 1H, J = 48.1 Hz), 4.71–4.93 (m, 2H), 4.27–4.41 (m, 2H).

ESI *m*/*z* 703.9 ([M+HCOO]⁻; C₂₈H₂₁Br₂FN₃O₆S requires 704.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)aniline (52)

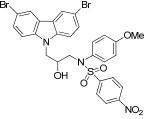

Cesium carbonate (11.5 mg, 0.036 mmol), Ns-C (7.9 mg, 0.012 mmol), THF (0.7 mL, 0.017 M) and benzenethiol (3.8 μ L, 0.037 mmol) were combined and stirred overnight. The crude reaction mixture was diluted with EtOAc, washed with water and brine. The organic layer was dried over Na₂SO₄, filtered and condensed. Chromatographic purification (SiO₂, 20% EtOAc/Hexanes + 0.2% Et₃N) provided **52** (4.2 mg, 74%).

¹H NMR (CDCl₃, 500 MHz) & 8.16 (s, 2H), 7.56 (d, 2H, *J* = 8.5 Hz), 7.31 (d, 2H, *J* = 8.5 Hz), 7.21 (t, 2H, *J* = 7.4 Hz), 6.80 (t, 1H, *J* = 7.3 Hz), 6.62 (d, 2H, *J* = 8.5 Hz), 5.11 (dddd, 1H, *J* = 5.4, 5.4, 10.4, 47.4 Hz), 4.52–4.68 (m, 2H), 3.94 (t, 1H, *J* = 6.0 Hz), 3.30–3.51, (dm, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 147.2, 139.6, 129.6, 129.5, 123.8, 123.5, 118.9, 113.5, 112.9, 110.6 (d, ⁴*J* = 2.0 Hz), 90.8 (d, ¹*J* = 176.9 Hz), 45.6 (d, ²*J* = 23.1 Hz), 45.1 (d, ²*J* = 25.1 Hz).

ESI m/z 475.0 ([M+H)⁺; C₂₁H₁₈Br₂FN₂ requires 475.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxyaniline (53)


Following Representative Procedure 5, 53 was prepared from Ns-B in 88%.

¹H NMR (CDCl₃, 500 MHz) δ 8.16 (d, 2H, J = 2.0 Hz), 7.56 (dd, 2H, J = 1.9, 8.7 Hz), 7.31 (d, 2H, J = 8.6 Hz), 7.11 (t, 1H, J = 8.1 Hz), 6.36 (dd, 1H, J = 2.2, 8.1 Hz), 6.23 (dd, 1H, J = 2.0, 8.0 Hz), 6.15 (t, 1H, J = 2.3 Hz), 5.11 (dddd, 1H, J = 4.6, 5.8, 10.4, 47.7 Hz), 4.60 (m, 2H), 4.39 (dm, 2H), 3.95 (t, 1H, J = 6.3 Hz), 3.75 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 148.6, 139.6, 130.4, 129.6, 123.9, 123.5, 112.9, 110.6 (d, ⁴*J* = 2.0 Hz), 106.5, 103.9, 99.7, 90.7 (d, ¹*J* = 176.9 Hz), 55.3, 45.6 (d, ²*J* = 22.1 Hz), 45.1 (d, ²*J* = 25.1 Hz).

ESI m/z 504.9 ([M+H]⁺, C₂₂H₂₀Br₂FN₂O requires 505.0).

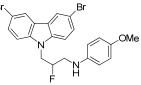
N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(4-methoxyphenyl)-4-nitrobenzenesulfonamide (Ns-D).

Prepared from epoxide A and Ns-anisidine according to Representative Procedure 3 in71% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.29 (d, 2H, *J* = 8.7 Hz), 8.11 (d, 2H, *J* = 1.9 Hz), 7.71 (d, 2H, *J* = 8.6 Hz), 7.52 (dd, 2H, *J* = 1.9, 8.6 Hz), 7.23 (d, 2H, *J* = 8.9 Hz), 6.94 (d, 2H, *J* = 8.9 Hz), 6.82 (d, 2H, *J* = 8.9 Hz), 4.44 (dd, 1H, *J* = 3.8, 14.8 Hz), 4.30 (m, 1H), 4.21 (br s, 1H), 3.81 (s, 3H), 3.69 (m, 2H).

ESI *m/z* 732.0 ([M+HCOO]⁻; C₂₉H₂₄Br₂N₃O₈S requires 732.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(4-methoxyphenyl)-4-nitrobenzenesulfonamide (Ns-E)

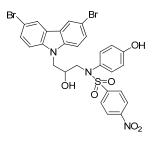


Prepared from Ns-D according to Representative Procedure 4 in 62% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.27 (m, 2H), 8.09 (m, 2H), 7.71 (d, 2H, *J* = 7.4 Hz), 7.53 (m, 2H), 7.19 (m, 2H), 6.95 (d, 2H, *J* = 8.8 Hz), 6.82 (d, 2H, *J* = 8.8 Hz), 4.92 (dm, 1H, *J*_d = 48.3 Hz), 4.55 (m, 2H), 3.88 (m, 2H), 3.79 (s, 3H).

ESI m/z 734.0 ([M+HCOO]⁻, C₂₉H₂₃Br₂FN₃O₇S requires 689.0).

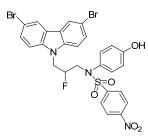
N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-4-methoxyaniline (54)


Prepared from Ns-E according to Representative Procedure 5 in 70% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (m, 2H), 7.53 (dt, 2H, J = 1.6, 8.8 Hz), 7.30 (d, 2H, J = 8.6 Hz), 6.78 (d, 2H, J = 7.9 Hz), 6.57 (d, 2H, J = 7.9 Hz), 5.07 (dddd, 1H, J = 4.7, 6.1, 9.4, 47.7 Hz), 4.58 (m, 2H), 3.75 (s, 3H), 3.32 (m, 2H).

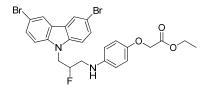
¹³C NMR (CDCl₃, 100 MHz) δ 153.2, 141.3, 139.7, 129.6, 123.9, 123.5, 115.1, 115.1, 112.9, 110.7 (d, ⁴*J* = 2.0 Hz), 90.9 (d, ¹*J* = 175.9 Hz), 55.9, 46.8 (d, ²*J* = 22.1 Hz), 45.0 (d, ¹*J* = 25.1 Hz).

ESI *m/z* 549.0 ([M+HCOO]⁻, C₂₃H₂₀Br₂FN₂O₃ requires 549.0).


N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(4-hydroxyphenyl)-4-nitrobenzenesulfonamide (Ns-F)

Boron tribromide (50 μ L, 0.53 mmol) was added dropwise to a cooled solution of Ns-**D** (95.0 mg, 0.14 mmol) in dry CH₂Cl₂ (2.5 mL, 0.055 M) in a 20 mL vial. The reaction was warmed gently in the melting ice bath. All starting material had been consumed after 2.5 h. The reaction mixture was diluted with EtOAc and washed with water, followed by saturated sodium bicarbonate solution and another water wash and brine. The organic was dried over Na₂SO₄, filtered and condensed. The crude material was purified by chromatography (SiO₂, 1% MeOH/CH₂Cl₂) to afford Ns-**F** in 70% yield.

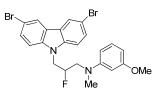
¹H NMR (CDCl₃, 400 MHz) δ 8.29 (d, 2H, *J* = 8.7 Hz), 8.11 (d, 2H, *J* = 1.9 Hz), 7.71 (d, 2H, *J* = 8.6 Hz), 7.52 (dd, 2H, *J* = 8.6, 1.9 Hz), 7.23 (d, 2H, *J* = 8.9 Hz), 6.94 (d, 2H, *J* = 8.9 Hz), 6.82 (d, 2H, *J* = 8.9 Hz), 4.44 (dd, 1H, *J* = 14.8, 3.8 Hz), 4.30 (m, 1H), 4.21 (br s, 1H), 3.81 (s, 3H), 3.69 (m, 2H).


N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-N-(4-hydroxyphenyl)-4-nitrobenzenesulfonamide (Ns-G)-2-fluoropropyl)-N-(4-hydroxyphenyl)-4-nitrobenzenesulfonamide (Ns-G)-2-fluoropropyl)-2-fluoropropyl-4-hydroxyphenyl-4-nitrobenzenesulfonamide (Ns-G)-2-fluoropropyl-4-hydroxyphenyl-4-h

Ns-G was prepared via Representative Procedure 4 (using Morpho-DAST). Crude material was purified by chromatography (SiO₂, 1% MeOH/CH₂Cl₂ +0.2% Et₃N) to afford Ns-G in 89% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.48 (d, 2H, *J* = 8.8 Hz), 8.41, (d, 2H, *J* = 1.7 Hz), 7.95 (d, 2H, *J* = 8.9 Hz), 7.66 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.10 (d, 2H, *J* = 8.8 Hz), 6.89 (d, 2H, *J* = 8.9 Hz), 5.10 (dddd, 1H, *J* = 3.6, 7.3, 11.0, 49.6 Hz), 4.74–4.89 (m, 2H), 4.16–4.33 (m, 2H), 3.09 (br s, 1H).

Ethyl 2-(4-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropylamino)phenoxy)acetate (55)

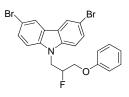


Following Representative Procedure 5, 55 was prepared from 74.

¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, 2H, *J* = 1.8 Hz), 7.50 (dd, 2H, *J* = 5.4 Hz), 7.23 (d, 2H, *J* = 5.4 Hz), 6.77 (d, 2H, *J* = 9.0 Hz), 6.51 (d, 2H, *J* = 8.8 Hz), 5.03 (dp, 1H, *J* = 5.8, 9.7, 47.5 Hz), 4.44–4.62 (m, 5H), 4.23 (q, 2H, *J* = 7.3 Hz), 3.15–3.41 (m, 2H), 1.26 (t, 3H, *J* = 7.0 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 169.5, 151.3, 142.2, 139.6, 129.5, 123.9, 123.5, 116.4, 114.8, 112.9, 110.6 (d, ⁴*J* = 1.4 Hz), 90.8 (d, ¹*J* = 176.4 Hz), 66.6, 61.4, 46.4 (d, ²*J* = 22.1 Hz), 45.0 (d, ¹*J* = 25.4 Hz).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-3-methoxy-N-methylaniline (56)

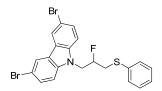

Prepared from 35 following Representative Procedure 4 in 71% yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.13 (d, 2H, *J* = 1.9 Hz), 7.54 (dd, 2H, *J* = 1.9, 8.8 Hz), 7.23 (d, 2H, *J* = 8.7 Hz), 7.12 (t, 1H, *J* = 8.2 Hz), 6.32 (dd, 1H, *J* = 2.2, 8.1 Hz), 6.26 (dd, 1H, *J* = 2.3, 8.0 Hz), 6.17 (t, 1H, *J* = 2.4 Hz), 5.10 (dddd, 1H, *J* = 4.6, 6.4, 10.7, 48.5 Hz), 4.37–4.48 (m, 2H), 3.72 (s, 3H), 3.60–3.71 (m, 1H), 3.53 (dt, 1H, *J* = 6.9, 15.9 Hz), 2.99 (s, 3H).

¹³C NMR (CDCl₃, 126 MHz) δ 158.5, 147.8, 137.1, 127.8, 127.0, 121.4, 120.9, 110.4, 108.2, 103.3, 99.9, 97.1, 88.7 (d, ${}^{1}J_{C-F} = 188$ Hz), 52.7, 52.3 (d, ${}^{2}J_{C-F} = 25$ Hz), 43.5, 43.3 (d, ${}^{2}J_{C-F} = 25$ Hz).

ESI m/z 518.9 ([M+H]⁺ for C₂₃H₂₂Br₂FN₂O requires 519.0).

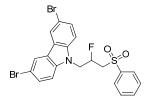
3,6-Dibromo-9-(2-fluoro-3-phenoxypropyl)-9H-carbazole (57)


Prepared from 42 following Representative Procedure 4. The crude mixture was purified by chromatography (SiO₂, 100% $CH_2Cl_2 + 0.2\% Et_3N$) to afford 57 in 97% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (d, 2H, *J* = 1.7 Hz), 7.51 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.29–7.35 (m, 4H), 7.01 (t, 1H, *J* = 7.5 Hz), 6.91 (d, 1H, *J* = 7.8 Hz), 5.16 (dddd, 1H, *J* = 4.5, 5.4, 9.7, 46.0 Hz), 4.59–4.79 (m, 2H), 4.03–4.17 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 157.9, 139.8, 129.9, 129.5, 123.9, 123.4, 122.0, 114.7, 112.9, 110.8 (d, ⁴*J* = 2.0 Hz), 89.7 (d, ¹*J* = 179.0 Hz), 66.2 (d, ²*J* = 26.1 Hz), 44.3 (d, ²*J* = 24.1 Hz).

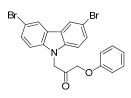
ESI *m*/z 519.9 ([M+HCOO)⁻, C₂₂H₁₇Br₂FNO₃ requires 520.0).


3,6-Dibromo-9-(2-fluoro-3-(phenylthio)propyl)-9H-carbazole (Fluoride A)

Fluorination of 44 following Representative Procedure 4 afforded fluoride A in 28% yield owing to elimination and rearrangement products.

¹H NMR (CDCl₃, 400 MHz) δ 8.13 (d, 2H, *J* = 1.9 Hz), 7.54 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.42 (dt, 2H, *J* = 2.0, 3.2 Hz), 7.36–7.27 (m, 5H), 5.04–4.81 (m, 1H), 4.66 (ddd, 1H, *J* = 2.8, 15.9, 26.6 Hz), 4.53 (ddd, 1H, *J* = 6.7, 15.9, 20.8 Hz), 3.37–3.23 (m, 1H), 3.09 (ddd, 1H, *J* = 8.4, 11.3, 14.2 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 139.8, 134.3, 129.6, 129.5, 127.6, 123.9, 123.4, 112.9, 110.9 (d, *J* = 2.1 Hz) 92.2, 90.4, 46.2 (d, *J* = 22.8 Hz) 35.6 (d, *J* = 23.3 Hz).

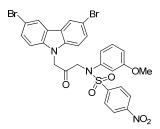

To a solution of fluoride **A** (0.0143 g, 0.0290 mmol) in 0.5 mL CH₂Cl₂, a solution of *m*CPBA (77%, 0.0162 g, 0.0725 mmol) in 0.5 mL CH₂Cl₂ was added dropwise. The mixture was sealed and stirred at rt overnight. The crude was diluted with 30 mL EtOAc and washed with saturated NaHCO₃ 3×30 mL and brine 1×30 mL. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, EtOAc/Hexanes) to afford white solid as product (0.0114 g, yield 75%).

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (s, 2H, *J* = 2.0 Hz), 7.90 (d, 2H, *J* = 8.0 Hz), 7.68 (t, 1H, *J* = 7.4 Hz), 7.63–7.53 (m, 4H), 7.34 (d, 2H, *J* = 8.7 Hz), 5.38 (dd, 1H, *J* = 5.9, 47.1 Hz), 4.72 (dd, 1H, *J* = 15.9, 26.8 Hz), 4.56 (ddd, 1H, *J* = 6.6, 16.0, 22.4 Hz), 3.61–3.40 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 139.8, 139.1 (d, J = 1.6 Hz), 134.7, 129.8, 129.8, 128.2, 124.1, 123.5, 113.3, 110.9 (d, J = 2.1 Hz), 87.2 (d, J = 182.1 Hz), 58.3 (d, J = 23.7 Hz), 47.2 (d, J = 22.5 Hz).

ESI m/z 557.9 ([M + Cl]⁻, C₂₁H₁₆Br₂ClFNO₂S requires 557.9).

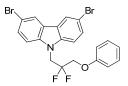
1-(3,6-Dibromo-9H-carbazol-9-yl)-3-phenoxypropan-2-one (59)



Dess-Martin periodinane (58.2 mg, 0.137 mmol) was charged to a solution of 42 (45.0 mg, 0.095 mmol) in CH_2Cl_2 (1.0 mL, 0.095 M). After 2 h the reaction mixture was diluted with EtOAc and washed with a saturated sodium thiosulfate solution, water and brine. The organic layer was dried over Na_2SO_4 , filtered and condensed. The crude product was used without additional purification (74% yield).

¹H NMR (CDCl₃, 400 MHz) δ 8.15 (d, 2H, J = 1.9 Hz), 7.52 (dd, 2H, J = 1.9, 8.6 Hz), 7.35 (m, 2H), 7.08 (t, 1H, J = 7.3 Hz), 7.04 (d, 2H, J = 8.9 Hz), 6.91 (m, 2H), 5.29 (s, 2H), 4.68 (m, 2H).

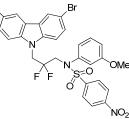
ESI m/z 469.9 ([M-H]⁻, C₂₁H₁₅Br₂NO₂ requires 470.0).


N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-oxopropyl)-N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (60)

Ns-A was oxidized with Dess-Martin periodinane as described for 59 to afford 60 in quantitative yield.

¹H NMR (CDCl₃, 500 MHz) δ 8.24 (d, 2H, *J* = 8.9 Hz), 8.14 (s, 2H), 7.68 (d, 2H, *J* = 9.1 Hz), 7.53 (d, 2H, *J* = 8.6 Hz), 7.18 (t, 1H, *J* = 8.7 Hz), 7.05 (t, 2H, *J* = 8.1 Hz), 6.87 (dd, 1H, *J* = 8.3, 2.5 Hz), 5.21, (s, 2H), 4.30 (s, 2H), 2.48 (s, 3H).

ESI m/z 683.9 ([M-H]⁻, C₂₈H₂₀Br₂N₃O₆S requires 684.0).

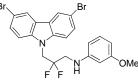

Diethylaminosulfur trifluoride (39 μ L, 0.30 mmol) was added dropwise to a solution of **59** (33.3 mg, 0.070 mmol) in anhydrous CH₂Cl₂ (1.5 mL, 0.047 M). The reaction was quenched with saturated sodium bicarbonate solution, and then extracted 3×CH₂Cl₂. The organic layer was dried over Na₂SO₄, filtered and condensed. The crude mixture was purified by chromatography (SiO₂, 10% EtOAc/Hexanes + 0.2% Et₃N) to afford **61** in 69% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, 2H, *J* = 1.9 Hz), 7.48 (dd, 2H, *J* = 1.8, 8.7 Hz) 7.30–7.40 (m, 4H), 7.06 (t, 1H, *J* = 7.3 Hz), 6.91 (d, 2H, *J* = 7.9 Hz), 4.79 (t, 2H, *J* = 12.4 Hz), 4.07 (t, 2H, *J* = 11.1 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 157.2, 140.0, 130.0, 129.6, 124.1, 123.3, 122.6, 114.8, 113.4, 111.1 (d, ⁴*J* = 1.0 Hz), 66.10 (t, ²*J* = 34.2 Hz), 45.4 (t, ²*J* = 31.2 Hz).

ESI m/z 537.9 ([M+HCOO]⁻, C₂₂H₁₆Br₂F₂NO₃ requires 538.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (Ns-H)

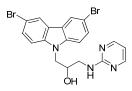


Ns-H was prepared from 60 as described for 61 in quantitative yield and the crude product was used without additional purification.

¹H NMR (CDCl₃, 500 MHz) δ 8.31 (d, 2H, *J* = 8.9 Hz), 8.11 (s, 2H), 7.77 (d, 2H, *J* = 8.9 Hz), 7.55 (dd, 2H, *J* = 1.8, 8.7 Hz), 7.25 (m, 3H), 6.92 (dd, 1H, *J* = 2.0, 8.3 Hz), 6.73 (m, 1H) 6.61, (d, 1H, *J* = 7.7 Hz), 4.78 (t, 2H, *J* = 14.7 Hz), 4.18 (t, 2H, *J* = 11.2 Hz), 3.78 (s, 3H).

ESI *m/z* 751.9 ([M+HCOO]⁻, C₂₉H₂₂Br₂F₂N₃O₇S requires 752.0).

N-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2,2-difluoropropyl)-3-methoxyaniline (62)



The nosyl group on Ns-H was removed according to Representative Procedure 5 to afford 62 in 35% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.11 (d, 2H, *J* = 1.6 Hz), 7.49 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.32 (d, 2H, *J* = 8.9 Hz), 7.11 (t, 1H, *J* = 8.2 Hz) 6.39 (dd, 1H, *J* = 2.3, 8.2 Hz), 4.68 (t, 2H, *J* = 13.2 Hz), 3.89 (t, 1H, *J* = 7.0 Hz), 3.74 (s, 3H), 3.47 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 161.0, 148.0, 140.0, 130.5, 129.7, 129.5, 124.1, 123.3, 113.4, 112.4, 111.2, 104.7, 100.3, 55.3, 46.7 (t, ${}^{2}J = 29.2$ Hz), 46.0 (t, ${}^{2}J = 30.2$ Hz).

ESI *m/z* 566.9 ([M+HCOO]⁻, C₂₃H₁₉Br₂F₂N₂O₃ requires 567.0).

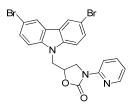
To a 4 mL vial was added **28** (34.8 mg, 0.087 mmol), 2-chloropyrimidine (10.3 mg, 0.090 mmol) and DMF (1.5 mL, 0.058 M). The reaction was heated at 100 °C overnight. The cooled reaction mixture was diluted with EtOAc and washed several times with water and brine. The organic layer was dried over Na_2SO_4 , filtered and condensed. The crude mixture was subjected to chromatography (SiO₂, 20% MeOH/CH₂Cl₂).

¹H NMR (CDCl₃, 400 MHz) δ 8.26 (d, 2H, *J* = 4.9 Hz), 8.14 (d, 2H, *J* = 1.9 Hz), 7.56 (dd, 2H, *J* = 1.9, 6.7 Hz), 7.37 (d, 2H, *J* = 8.7 Hz), 6.63 (t, 1H, *J* = 4.9 Hz), 5.43 (t, 1H, *J* = 5.7 Hz), 4.36 (s, 3H), 3.56 (m, 1H), 3.30–3.38 (m, 1H).

¹³C NMR (CDCl₃, 126 MHz) δ 139.4, 129.5 (2C), 129.3 (2C), 123.7 (2C), 123.4 (2C), 118.6 (2C), 113.5 (2C), 112.3, 110.7 (2C), 67.6, 50.9, 33.6.

ESI *m/z* 474.9 ([M+H]⁺, C₁₉H₁₇Br₂N₄O requires 475.0).

5-((3,6-Dibromo-9H-carbazol-9-yl)methyl)oxazolidin-2-one (Oxazolidinone A)

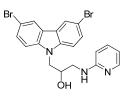


A solution of triphosgene (0.0890 g, 0.300 mmol, 0.35 equiv) in 2 mL anhydrous CH_2Cl_2 was added dropwise to a solution of **28** (0.3413 g, 0.857 mmol) and Et_3N (0.1909 g, 1.886 mmol) in 1 mL CH_2Cl_2 under N_2 atmosphere at 4 °C. The reaction mixture was stirred for 15 min at 4 °C and then warmed to room temperature and stirred for 1 hour. CH_2Cl_2 was removed under vacuum. Saturated NH_4Cl (5 mL) and 10 mL EtOAc were added to the residue and stirred for 20 min. The aqueous layer was separated and the organic layer was washed with water 2×10 mL. The combined aqueous layers were extracted with EtOAc, dried over anhydrous Na_2SO_4 and evaporated to afford the crude product, which was purified by chromatography (SiO₂, $CH_2Cl_2/EtOAc$) to afford oxazolidinone **A** as a white solid (117 mg, 20% over 2 steps).

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, 2H, J = 1.9 Hz), 7.58 (dd, 2H, J = 1.9, 8.7 Hz), 7.31 (d, 2H, J = 8.7 Hz), 5.05–5.14 (m, 1H), 5.02 (br s, 1H), 4.54 (dd, 2H, J = 5.2, 1.8 Hz), 3.67 (t, 1H, J = 8.5 Hz), 3.37 (dd, 1H, J = 6.3, 9.0 Hz).

ESI *m/z* 466.9 ([M+HCOO]⁻, C₁₇H₁₃Br₂N₂O₄ requires 466.9).

5-((3,6-Dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-2-yl)oxazolidin-2-one (Oxazolidinone B)

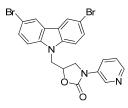


Following a literature procedure¹⁷, a mixture of oxazolidinone **A** (0.0195 g, 0.0460 mmol), 2-iodopyridine (0.0209 g, 0.102 mmol), CuI (0.0009 g, 0.00460 mmol), and K₂CO₃ (0.0058 g, 0.0418 mmol,) in 0.5 mL of DMSO was sealed tightly in a vial and heated at 130 °C for 12 h. The reaction mixture was cooled and diluted with 20 mL EtOAc and washed 5×10 mL water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, CH₂Cl₂/EtOAc) to afford oxazolidinone **B** as a white solid (0.0183 g, 79%).

¹H NMR (CDCl₃, 400 MHz) δ 8.25 (d, 1H, *J* = 4.9 Hz), 8.13 (d, 2H, *J* = 1.3 Hz), 8.11 (s, 1H), 7.68 (t, 1H, *J* = 7.9 H), 7.59 (dd, 2H, *J* = 1.7, 8.7 Hz), 7.35 (d, 2H, *J* = 8.7 Hz), 7.02 (t, 1H, *J* = 6.1 Hz), 5.02–5.16 (m, 1H), 4.60 (d, 2H, *J* = 5.0 Hz), 4.36 (dd, 1H, *J* = 8.7, 10.7 Hz), 4.04 (dd, 1H, *J* = 7.1, 10.8 Hz).

ESI *m/z* 543.9 ([M + HCOO]⁻, C₂₂H₁₆Br₂N₃O₄ requires 544.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(pyridin-2-ylamino)propan-2-ol (64)

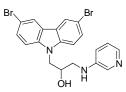

LiOH·H₂O (0.0076 g, 0.182 mmol, 10 equiv) was added to oxazolidinone **B** (0.0091 g, 0.0182 mmol) in a mixture of 208 μ L THF and 23 μ L H₂O (v/v = 9:1). The mixture was stirred at room temperature for 7 d. The reaction mixture was purified by chromatography (SiO₂, 1:1 CH₂Cl₂/EtOAc + 1% Et₃N) to afford **64** as a white solid (0.0071 g, 41%).

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, 2H, *J* = 1.9 Hz), 8.04 (d, 1H, *J* = 4.5 Hz), 7.56 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.40–7.48 (m, 1H), 7.37 (d, 2H, *J* = 8.7 Hz), 6.66 (t, 1H, *J* = 6.2 Hz), 6.46 (d, 1H, *J* = 8.0 Hz), 4.52 (t, 1H, *J* = 5.0 Hz), 4.26–4.41 (m, 3H), 3.44 (dd, 1H, *J* = 5.0, 15.2 Hz), 3.15–3.32 (m, 1H), 2.27–2.44 (m, 1H).

¹³C NMR (CDCl₃, 100 MHz) δ 158.6, 146.7, 139.5, 138.1, 129.2, 123.6, 123.3, 113.9, 112.3, 110.9, 109.6, 70.5, 47.4, 46.8.

ESI m/z 518.0 ([M + HCOO]⁻, C₂₁H₁₈Br₂N₃O₃ requires 518.0).

5-((3,6-Dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-3-yl)oxazolidin-2-one (Oxazolidinone C)

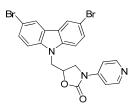


A mixture of oxazolidinone **A** (0.0390 g, 0.0920 mmol), 3-iodopyridine (0.0419 g, 0.204 mmol), CuI (0.0018 g, 0. 00920 mmol), and K_2CO_3 (0.0116 g, 0.0837 mmol) in 0.5 mL of DMSO was heated at 130 °C for 12 hours in a sealed vial. The reaction mixture was cooled and diluted with 20 mL EtOAc and washed with water 2×10 mL and brine 2×10 mL. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford oxazolidinone **C** as a white solid (0.0383 g, 84%), which was used without further purification.

¹H NMR (CDCl₃, 400 MHz) δ 8.44 (s, 1H), 8.37 (d, 1H, *J* = 4.2 Hz), 8.14 (d, 2H, *J* = 1.9 Hz), 8.03 (ddd, 1H, *J* = 1.2, 2.6, 8.5 Hz), 7.59 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.34 (d, 2H, *J* = 8.7 Hz), 7.27 (dd, 1H, *J* = 4.9, 8.3 Hz), 5.15 (dt, 1H, *J* = 5.4, 11.8 Hz), 4.72–4.55 (m, 2H), 4.12 (dd, 1H, *J* = 7.9, 10.0 Hz), 3.82 (dd, 1H, *J* = 6.6, 9.1 Hz).

ESI m/z 543.9 ([M + HCOO]⁻, C₂₂H₁₆Br₂N₃O₄ requires 544.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(pyridin-3-ylamino)propan-2-ol (65)

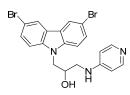


Following a procedure similar to that used to prepare 64, 65 was prepared from oxazolidinone C in 79% yield.

¹H NMR (CDCl₃, 600 MHz) δ 8.11 (d, 2H, *J* = 1.6 Hz), 7.83 (br s, 2H), 7.52 (dd, 2H, *J* = 1.8, 8.7 Hz), 7.32 (d, 2H, *J* = 8.7 Hz), 7.02 (br s, 1H), 6.81 (d, 1H, *J* = 7.4 Hz), 4.45–4.33 (m, 3H), 3.30 (d, 1H, *J* = 11.8 Hz), 3.15 (dd, 1H, *J* = 6.2, 12.6 Hz).

¹³C NMR (CDCl₃, 100 MHz) δ 139.8, 139.5, 136.2, 130.0, 129.5, 124.1, 123.8, 123.5, 119.7, 112.8, 110.9, 69.0, 47.6, 47.3.

5-((3,6-Dibromo-9H-carbazol-9-yl)methyl)-3-(pyridin-4-yl)oxazolidin-2-one (Oxazolidinone D)

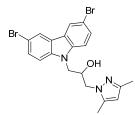


A mixture of oxazolidinone **A** (0.0195 g, 0.0460 mmol), 4-iodopyridine (0.0209 g, 0.102mmol), CuI (0.0009 g, 0. 00460 mmol), and K_2CO_3 (0.0058 g, 0.0418 mmol) in 0.5 mL of DMSO was at 130 °C for 12 h in a sealed vial. The reaction mixture was cooled and diluted with 20 mL EtOAc and washed with brine (3×10 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was further triturated from a CH₂Cl₂ suspension by hexane to afford oxazolidinone D as a white solid (0.0187 g, 75)%.

¹H NMR (CDCl₃, 400 MHz) δ 8.55 (br s, 2H), 8.16 (d, 2H, J = 1.8 Hz), 7.61 (dd, 2H, J = 1.8, 8.6 Hz), 7.37 (br s, 2H), 7.34 (d, 2H, J = 8.7 Hz), 5.23–5.10 (m, 1H), 4.64 (d, 2H, J = 4.6 Hz), 4.08 (t, 1H, J = 9.0 Hz), 3.77 (dd, 1H, J = 6.8, 9.4 Hz).

ESI *m*/z 544.0 ([M + HCOO]⁻, C₂₂H₁₆Br₂N₃O₄ requires 544.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(pyridin-4-ylamino)propan-2-ol (66)

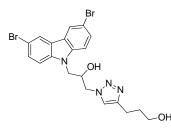

Following a procedure similar to that used to prepare 64, 66 was prepared from oxazolidinone **D** in 7% yield (reaction time was shortened to 3 d).

¹H NMR (acetone- d_6 , 400 MHz) δ 8.37 (s, 2H), 8.10 (br s, 2H), 7.62 (d, 2H, J = 8.7 Hz), 7.56 (d, 2H, J = 8.6 Hz), 6.61 (s, 2H), 4.61 (dd, 1H, J = 3.4, 14.8 Hz), 4.51 (dd, 1H, J = 7.6, 15.0 Hz), 4.41 (dt, 1H, J = 4.1, 7.6 Hz), 3.49 (dd, 1H, J = 4.4, 13.2 Hz), 3.33 (dd, 1H, J = 6.4, 13.1 Hz).

¹³C NMR (acetone-*d*₆, 100 MHz) δ 179.0, 149.6, 140.4, 129.0, 123.8, 123.3, 112.1, 111.8, 107.8, 68.8, 47.6, 46.4.

ESI m/z 517.9 ([M + HCOO]⁻, C₂₁H₁₈Br₂N₃O₃ requires 518.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-3-(3,5-dimethyl-1H-pyrazol-1-yl)propan-2-ol (67)

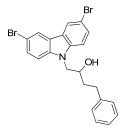

Following a literature procedure¹⁸, **30** (56 mg, 0.136 mmol) was added to a 25 mL scintillation vial, followed by the addition of acetylacetone (13.7 mg, 0.136 mmol) in 1 mL of EtOH and heated to 70 °C for 1 h. Upon completion the reaction was cooled to room temperature and concentrated under reduced pressure. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford **67** as an off-white solid (29 mg, 45%).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, 2H, *J* = 1.9 Hz), 7.51 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.14 (d, 2H, *J* = 8.7 Hz), 5.79 (s, 1H), 5.19–5.10 (br s, 1H), 4.51 (m, 1H), 4.38 (s, 1H), 4.36 (s, 1H), 3.92 (dd, 1H, *J* = 3.0, 13.8 Hz), 3.69 (dd, 1H, *J* = 6.4, 13.8 Hz), 2.21 (s, 3H), 1.85 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 148.4, 140.3, 139.6 (2C), 129.4 (2C), 123.8 (2C), 123.4 (2C), 112.7 (2C), 110.9 (2C), 105.3, 69.7, 49.9, 46.5, 13.7, 11.0.

ESI *m/z* 475.9 ([M+H])⁺, C₂₀H₂₀Br₂N₃O requires 476.0).

3-(1-(3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)propan-1-ol (68)

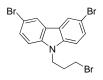

Following a literature procedure¹⁹, **31** (111 mg, 0.262 mmol) and 4-pentyne-1ol (44 mg, 0.5 mmol) were suspended in 1 mL of a 3:1 water/*t*-BuOH mixture. Sodium ascorbate (10 mg, 0.052 mmol) was added followed by $CuSO_4 \bullet H_2O$ (2 mg, 0.01 mmol). The heterogeneous mixture was stirred at room temperature for 12 h. Upon completion, the reaction was partitioned between EtOAc and H₂O. The aqueous layer was washed 3×EtOAc. The organic extract was combined and washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–0% EtOAc/Hexane) to afford **68** as an off-white solid (72 mg, 54%).

¹H NMR (d_6 -DMSO, 400 MHz) δ 8.47 (d, 2H, J = 1.1 Hz), 7.82 (s, 1H), 7.61 (m, 4H), 5.46 (d, 1H, J = 5.6 Hz), 4.55 (dd, 1H, J = 3.3, 13.7 Hz), 4.5–4.42 (m, 2H), 4.42–4.24 (m, 3H), 3.43 (dd, 2H, J = 6.3, 11.6 Hz), 2.64 (t, 2H, J = 7.6 Hz), 1.79–1.64 (m, 2H).

¹³C NMR (acetone-*d*₆, 125 MHz) δ 148.0, 141.1, 129.8, 124.6, 124.1, 123.4, 112.8, 112.7, 70.2, 70.1, 54.3, 48.0, 33.5, 22.9.

ESI m/z 506.9 ([M+H]⁺, C₂₀H₂₁Br₂N₄O₂ requires 507.0).

1-(3,6-Dibromo-9H-carbazol-9-yl)-4-phenylbutan-2-ol (69)


3,6-Dibromocarbazole (100 mg, 0.307 mmol) was treated with KOH (21 mg, 0.369 mmol, freshly ground) in 1 mL DMF for 1 h at room temperature. 2-Phenethyloxirane (55 mg, 0.369 mmol) in 500 μ L of DMF was added and reaction was stirred overnight at 60 °Cⁱⁱ. Upon completion, the reaction was cooled to room temperature and poured over ice. The aqueous layer was washed 3×EtOAc. The organic extracts were combined and washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–50% EtOAc/Hexane) to afford **69** as an off-white solid (102 mg, 70%).

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 1.9 Hz), 7.52 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.32–7.24 (m, 2H), 7.23–7.15 (m, 3H), 4.27–4.20 (m, 2H), 4.17–4.05 (m, 1H), 2.94–2.81 (m, 1H), 2.80–2.66 (m, 1H), 1.93 (dd, 2H, *J* = 7.9, 13.9 Hz), 1.64 (d, 1H, *J* = 4.3 Hz).

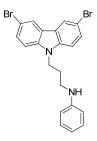
¹³C NMR (CDCl₃, 100 MHz) δ 141.2, 139.9 (2C), 129.4 (2C), 128.8 (2C), 128.6 (2C), 126.4 (2C), 123.7, 123.4 (2C), 112.6 (2C), 111.0 (2C), 70.4, 50.1, 36.4, 32.0.

ESI m/z 471.9 ([M+H])⁺, C₂₂H₂₀Br₂NO requires 472.0).

3,6-Dibromo-9-(3-bromopropyl)-9H-carbazole (Bromopropane A)

Crushed KOH (0.0673 g, 1.20 mmol, 1.2 equiv) was added to 3,6-dibromocarbazole (0.3250 g, 1.00 mmol) in 2 mL DMF solution and the mixture was stirred for 30 min. 1,3-Dibromopropane (0.5047 g, 2.50 mmol, 2.5 equiv) in 3 mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The crude reaction mixture was diluted with 30 mL EtOAc and washed with 2×10 mL 1M HCl and with 3×10 mL water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford bromopropane **A** as a colorless oil (0.1275 g, 29%).

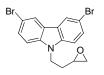
¹H NMR (CDCl₃, 400 MHz) δ 8.02 (d, 2H, *J* = 1.7 Hz), 7.51 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.26 (d, 2H, *J* = 8.8 Hz), 4.33 (t, 2H, *J* = 6.6 Hz), 3.29 (t, 2H, *J* = 6.1 Hz), 2.24–2.44 (m, 2H).


N-(3-(3,6-Dibromo-9H-carbazol-9-yl)propyl)-2-nitro-N-phenylbenzenesulfonamide (Ns-I)

Following a modified literature procedure²⁰, crushed KOH (0.0024 g, 0.0431 mmol) was added to 2-nitro-*N*-phenylbenzenesulfonamide (0.0100 g, 0.0359 mmol) in 0.2 mL DMF solution and the mixture was stirred for 30 min. Bromopropane **A** (0.0240 g, 0.0538 mmol) in 0.3 mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The crude reaction mixture was diluted with 20 mL EtOAc and washed with 5×10 mL water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford Ns-**I** as an impure white solid (0.0082 g, purity 66.9%; impurity is starting Ns-aniline; used without additional purification, 36% yield).

¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, 2H, *J* = 1.9 Hz), 7.59–7.71 (m, 2H), 7.51 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.41–7.44 (m, 2H), 7.32 (d, 2H, *J* = 3.7 Hz), 7.18–7.25 (m, 3H), 7.17 (s, 1H), 7.15 (s, 1H), 4.32–4.38 (m, 2H), 3.95 (t, 2H, *J* = 6.6 Hz), 1.89–2.01 (m, 2H).

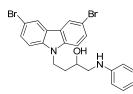
N-(3-(3,6-Dibromo-9H-carbazol-9-yl)propyl)aniline (70)



Ns-I (0.0378 g, 0.0588 mmol, 1 equiv), cesium carbonate (0.057 4 g, 0.176 mmol, 3 equiv) and benzenethiol (0.0194 g, 0.176 mmol) were mixed in 1 mL anhydrous THF. The mixture was stirred at room temperature for 3 h. THF was removed under vacuum and the residue was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford **70** as a colorless oil (0.0164 g, 61%).

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 1.9 Hz), 7.51 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.25 (d, 2H, *J* = 8.7 Hz), 7.16 (dd, 2H, *J* = 7.4, 8.5 Hz), 6.73 (t, 1H, *J* = 7.3 Hz), 6.53 (dd, 2H, *J* = 1.0, 8.6 Hz), 4.37 (t, 2H, *J* = 6.7 Hz), 3.55 (br s, 1H), 3.09 (t, 2H, *J* = 6.6 Hz), 2.08–2.29 (m, 2H).

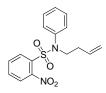
¹³C NMR (CDCl₃, 100 MHz) δ 148.0, 139.5, 129.6, 129.4, 123.7, 123.6, 118.2, 113.3, 112.4, 110.5, 41.4, 40.9, 28.9.


ESI m/z 456.9 ([M+H]⁺ C₂₁H₁₉Br₂N₂ requires 457.0).

Crushed KOH (0.0054 g, 0.0954 mmol, 1.2 equiv) was added to 3,6-dibromocarbazole (0.0258 g, 0.0795 mmol, 1equiv) in 0.5 mL DMF solution and the mixture was stirred for 30 min. 1-Bromo-3,4-epoxybutane (0.0300 g, 0.199 mmol) in 0.5 mL DMF solution was added dropwise into the mixture and it was stirred at room temperature for overnight. The crude reaction was diluted with 20 mL EtOAc and washed with 5×10 mL water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford epoxide L as a white solid (31.2 mg, 98%).

¹H NMR (CDCl₃, 400 MHz) δ 8.08 (d, 2H, *J* = 1.9 Hz), 7.50 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.27 (d, 2H, *J* = 8.7 Hz), 4.26–4.54 (m, 2H), 2.69–2.80 (m, 1H), 2.64 (dd, 1H, *J* = 4.1, 4.8 Hz), 2.34 (dd, 1H, *J* = 2.6, 4.9 Hz), 2.13–2.27 (m, 1H), 1.65–1.81 (m, 1H).

4-(3,6-Dibromo-9H-carbazol-9-yl)-1-(phenylamino)butan-2-ol (71)


According to Representative Procedure 2 using BiCl₃, 71 was prepared from epoxide L to afford a white solid in 31% yield.

¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, 2H, *J* = 1.9 Hz), 7.60 (dd, 2H, *J* = 1.9, 8.7 Hz), 7.38 (d, 2H, *J* = 8.7 Hz), 7.15 (dd, 2H, *J* = 7.6, 8.3 Hz), 6.74 (t, 1H, *J* = 7.3 Hz), 6.57 (d, 2H, *J* = 7.7 Hz), 4.51–4.60 (m, 1H), 4.39–4.48 (m, 1H), 3.60–3.74 (m, 1H), 3.09–3.17 (dd, 1H, *J* = 8.3, 13.2 Hz), 2.99–3.07 (dd, 1H, *J* = 3.4, 13.2 Hz), 2.05–2.14 (m, 1H), 1.87–1.98 (m, 1H).

¹³C NMR (CDCl₃, 125 MHz) δ 148.1, 139.6, 129.6, 129.4, 123.8, 123.6, 118.7, 113.6, 112.4, 110.8, 67.7, 51.0, 39.9, 33.7.

ESI m/z 486.9 ([M+H]⁺ for C₂₂H₂₁Br₂N₂O requires 487.0).

N-(But-3-enyl)-2-nitro-N-phenylbenzenesulfonamide (Ns-J)

Crushed KOH (0.0484 g, 0.862 mmol, 1.2 equiv) was added to 2-nitro-*N*-phenylbenzenesulfonamide (0.200 g, 0.719 mmol) in 1 mL DMF, and the mixture was stirred for 30 min. 4-Bromo-1-butene (0.2426 g, 1.80 mmol) in 2 mL DMF solution was added dropwise into the mixture and it was stirred at room temperature overnight. The reaction mixture was diluted with 30 mL EtOAc and washed with 2×10 mL 1M HCl and 3×10 mL water. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified via chromatography (SiO₂, Hexanes/EtOAc) to afford Ns-J as a white solid (0.1546 g, 64%).

¹H NMR (CDCl₃, 400 MHz) δ 7.60–7.66 (m, 1H), 7.52–7.58 (m, 1H), 7.42–7.46 (m, 2H), 7.30 (d, 2H, *J* = 1.9 Hz), 7.14–7.21 (m, 3H), 5.64–5.83 (m, 1H), 5.03 (s, 1H), 5.00 (d, 1H, *J* = 4.4 Hz), 3.83 (t, 2H, *J* = 7.2 Hz), 2.20 (q, 2H, *J* = 6.9 Hz).

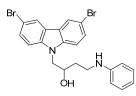
2-Nitro-N-(2-(oxiran-2-yl)ethyl)-N-phenylbenzenesulfonamide (Epoxide M)

m-CPBA (77%, 0.0550 g, 0.246 mmol) was added to Ns-**J** (0.0653 g, 0.196 mmol) in 1 mL CHCl₃ at 0 °C. The mixture was stirred at 0 °C for 30 min, then gradually warmed up to room temperature and continued to stir for 18 h. After TLC showed the disappearance of starting material, the reaction mixture was diluted with a 1:1 mixture of water and saturated NaHCO₃ (2×10 mL) and water (10 mL). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford epoxide **M** as a colorless oil (0.0662 g, 97%).

¹H NMR (CDCl₃, 400 MHz) δ 7.57–7.66 (m, 2H), 7.43–7.47 (m, 2H), 7.28–7.34 (m, 3H), 7.19–7.23 (m, 2H), 3.87–4.07 (m, 2H), 2.93–3.03 (m, 1H), 2.70–2.80 (m, 1H), 2.46 (dd, 1H, *J* = 2.7, 5.0 Hz), 1.66–1.79 (m, 2H).

ESI m/z 371.0 ([M+Na]⁺ for C₁₆H₁₆N₂NaO₅S requires 371.1).

N-(2-(Oxiran-2-yl)ethyl)aniline (Epoxide N)

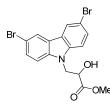


Prepared from epoxide M using a procedure analogous to that used to prepare 70.

¹H NMR (CDCl₃, 400 MHz) δ 7.18 (dd, 2H, J = 7.4, 8.5 Hz), 6.71 (t, 1H, J = 7.3 Hz), 6.62 (d, 2H, J = 7.7 Hz), 3.87 (br s, 1H), 3.31 (t, 2H, J = 6.6 Hz), 3.00–3.10 (m, 1H), 2.79 (t, 1H, J = 4.4 Hz), 2.55 (dd, 1H, J = 2.7, 4.9 Hz), 1.98–2.15 (m, 1H), 1.64–1.79 (m, 1H).

ESI m/z 164.1 ([M+H]⁺ for C₁₀H₁₄NO requires 164.1).

1-(3,6-Dibromo-9H-carbazol-9-yl)-4-(phenylamino)butan-2-ol (72)

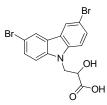

NaH (60% dispersion in mineral oil, 0.0018 g, 0.0452 mmol) was added to a solution of 3,6-dibromocarbazole (0.0147 g, 0.0452 mmol) in 0.5 mL anhydrous THF and the mixture was stirred for 15 min. Epoxide **N** (0.0067 g, 0.0410 mmol) in 1.5 mL anhydrous THF solution was added dropwise and the resulting mixture was stirred at 60 °C overnight. THF was removed under vacuum and the residue was dissolved in 10 mL EtOAc and washed with water 2×5 mL. The organic layer was dried over anhydrous Na₂SO₄ and evaporated to afford the crude product, which was purified by chromatography (SiO₂, Hexanes/EtOAc) to afford **72** as a colorless oil (0.0115 g, 58%).

¹H NMR (CDCl₃, 400 MHz) δ 8.12 (d, 2H, *J* = 2.0 Hz), 7.54 (dd, 2H, *J* = 2.0, 8.7 Hz), 7.31 (d, 2H, *J* = 8.7 Hz), 7.18 (t, 2H, *J* = 8.0 Hz), 6.76 (t, 1H, *J* = 7.3 Hz), 6.63 (d, 2H, *J* = 8.5 Hz), 4.20–4.38 (m, 3H), 3.22–3.41 (m, 2H), 1.76–1.95 (m, 2H).

¹³C NMR (CDCl₃, 100 MHz) δ 148.1, 139.9, 129.6, 129.5, 123.8, 123.5, 118.7, 113.9, 112.7, 111.1, 70.7, 50.0, 42.2, 34.1.

ESI m/z 531.0 ([M + HCOO]⁻, C₂₃H₂₁Br₂N₂O₃ requires 531.0); 486.9 ([M+H]⁺ for C₂₂H₂₁Br₂N₂O requires 487.0).

Methyl 3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropanoate (Ester A)

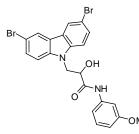

3,6-Dibromocarbazole (0.300 g, 0.923 mmol) was dissolved in DMF (1.2 mL) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.074 g, 1.846 mmol) was added and the reaction stirred for 1 h at 0 °C. Methyl glycidate (0.471 g, 4.615 mmol) was added and the reaction was stirred and warmed to ambient temperature over 3.5 h. Upon completion by TLC the reaction mixture was partitioned between EtOAc and H₂O. The aqueous layer was extracted $3 \times EtOAc$, and the combined organics were washed with saturated aqueous NaCl, dried

over Na_2SO_4 , filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–30% EtOAc/Hexane) to afford ester A (125 mg, 32%).

¹H NMR (CDCl₃, 500 MHz) δ 8.10 (d, 2H, *J* = 2.0 Hz), 7.53 (dd, 2H, *J* = 2.0, 9.0 Hz), 7.36 (d, 2H, *J* = 9.0 Hz), 4.63–4.55 (m, 3H), 3.69 (s, 3H), 2.94 (d, 1H, *J* = 5.5 Hz).

ESI *m/z* 425.8 ([M+H]⁺, C₁₆H₁₄Br₂NO₃ requires 425.9).

3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxypropanoic acid (Acid A)

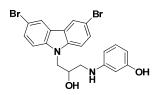


NaOH (0.64 mL, 1M solution in H_2O) was added to a suspension of ester **A** (0.055 g, 0.129 mmol) in EtOH (2.6 mL) and the reaction was stirred at ambient temperature for 2.5 h. The reaction was concentrated in vacuo and the residue was acidified with 1N aqueous HCl. The mixture was extracted 3×EtOAc and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo to afford acid **A** as a white solid (53 mg, 99%).

¹H NMR (CDCl₃, 500 MHz) δ 8.10 (d, 2H, *J* = 1.5 Hz), 7.52 (dd, 2H, *J* = 1.5, 8.5 Hz), 7.40 (d, 2H, *J* = 9.0 Hz), 4.68 (m, 2H), 4.60 (dd, 1H, *J* = 6.5, 15.5 Hz).

ESI *m/z* 411.9 ([M+H]⁺, C₁₅H₁₂Br₂NO₃ requires 411.9).

3-(3,6-Dibromo-9H-carbazol-9-yl)-2-hydroxy-N-(3-methoxyphenyl)propanamide (73)

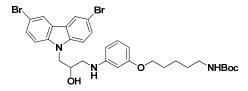


Acid **A** (0.025 g, 0.061 mmol) was suspended in anhydrous CH_2Cl_2 and cooled to 0 °C. Thionyl chloride (0.005 mL, 0.073 mmol) was added dropwise and the reaction was stirred at 0 °C for 1 h. *m*-Anisidine (0.008 mL, 0.073 mmol) and Et_3N (0.010 mL, 0.073 mmol) were added and the reaction was allowed to warm to ambient temperature over 2.5 h. Upon completion, the solution was partitioned between EtOAc and H₂O. The aqueous layer was washed 3×EtOAc, and the combined organics were washed with saturated aqueous NaCl, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by chromatography (SiO₂, 0–30% EtOAc/Hexane) to afford **73** (15 mg, 48%).

¹H NMR (acetone- d_6 , 500 MHz) δ 9.22 (br s, 1H), 8.34 (d, 2H, J = 1.5 Hz), 7.65 (d, 2H, J = 8.5 Hz), 7.59 (dd, 2H, J = 4.0, 8.5 Hz), 7.42 (dd, 1H, J = 2.0 Hz), 7.24 (m, 1H), 7.20 (dd, 1H, J = 8.0 Hz), 6.67 (dd, 1H, J = 2.0, 8.0 Hz), 5.56 (br s, 1H), 4.82 (m, 1H), 4.73 (m, 2H), 3.77 (s, 3H).

¹³C NMR (CDCl₃, 100 MHz) δ 170.9, 161.1, 141.1, 140.3, 130.3 (2C), 129.8 (2C), 124.6 (2C), 124.0 (2C), 113.1 (2C), 112.8 (2C), 112.7, 110.5, 106.4, 72.7, 55.6, 48.4.

ESI *m*/*z* 514.9 ([M–H]⁻, C₂₂H₁₇Br₂N₂O₃ requires 515.0).

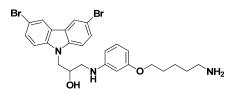


3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylamino)phenol (74)

Boron tribomide (0.28 ml, 3.0 mmol) was added to a solution of 7 (100.6 mg, 0.20 mmol) in anhydrous dichloromethane (1.6 ml, 0.12 M) in a in an ice bath. The cold bath was removed after 5 minutes, and the reaction mixture was stirred until starting material was consumed as judged by LC/MS. The reaction was quenched with saturated NaHCO₃. The mixture was diluted with EtOAc, washed twice with water and then brine. The organic layer was dried over Na₂SO₄, filtered and condensed. Flash chromatography on silica gel provided the purified product (2% MeOH/DCM). Yield=74%

¹H NMR (CDCl₃, 400 MHz) 8.10 (s, 2H), 7.51 (d, 2H, J = 8.8 Hz), 7.26 (m, 2H), 6.99 (t, 1H, J = 8.1 Hz), 6.21 (d, 1H, J = 8.4 Hz), 6.16 (d, 1H, J = 8.4 Hz), 6.04 (s, 1H), 5.31 (s, 1H), 4.29 (m, 3H), 3.05-3.27 (m, 2H).

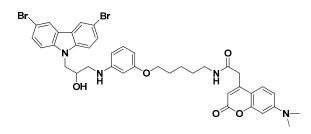
MS (ESI), m/z: calculated 487.97, found 532.7 (M+HCOO)⁻.



tert-butyl 5-(3-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropylamino)phenoxy)pentylcarbamate (75)

A solution phenol **74** (72.2 mg, 0.15 mmol), 5-(tert-butoxycarbonylamino)pentyl methanesulfonate (133.7 mg, 0.48 mmol) and potassium carbonate (65.3 mg, 0.47 mmol) in DMF (2.0 ml) in a scintillation vial was heated at 90 0 C overnight, after which all SM had been consumed. The reaction mixture was cooled and diluted with EtOAc and washed several times with water and then brine. The organic layer was dried over Na₂SO₄, filtered and condensed. Flash chromatography on silica gel (40% EtOAc/hexanes) provided the purified product. Yield=73%

¹H NMR (CDCl₃, 500 MHz) 8.14 (d, 2H, *J* = 1.6 Hz), 7.54 (dd, 2H, *J* = 8.7, 1.7 Hz), 7.35 (d, 2H, *J* = 8.7 Hz), 7.07 d, 1H, *J* = 7.8 Hz), 6.30 (dd, 1H, *J* = 8.2, 2.1 Hz), 6.22 (dd, 1H, *J* = 8.4, 1.8 Hz), 4.55 (bs, 1H), 4.34-4.46 (m, 3H), 3.86 (t, 2H, *J* = 6.3 Hz), 3.10-3.35 (m, 4H), 2.90 (s, 1H), 2.43 (bs, 1H), 1.76 (m, 2H), 1.46-1.58 (m, 4H), 1.44 (s, 9H).


MS (ESI), m/z: calculated 673.12, found 674.1 (M+1)⁺.

1-(3-(5-aminopentyloxy)phenylamino)-3-(3,6-dibromo-9H-carbazol-9-yl)propan-2-ol (amine A)

Trifluoroacetic acid (50 μ l, 0.649 mmol) was added dropwise to a solution of carbamate **75** (25.0 mg, 0.037 mmol) in dichloromethane (2.0 ml). Once all the starting material had been consumed the reaction was condensed and the crude reaction product was used without purification.

MS (ESI), m/z: calculated 573.06, found 574.0 $(M+1)^+$.

A solution of 2-(7-(dimethylamino)-2-oxo-2H-chromen-4-yl)acetic acid (2.5 mg, 0.0092 mmol) and EDC (2.4 mg, 0.013 mmol) in 0.3 ml DMF was cooled in an ice bath before the addition of a solution of amine **A** (5.3 mg, 0.0092 mmol) in 0.2ml DMF. An additional 0.4 ml DMF was introduced to the reaction vial. Hunig's base (10 μ l, 0.057 mmol) was added to the cold solution which was then slowly warmed to ambient temperature. After 12 h, additional acid (3.3 mg, 0.013 mmol) was treated with EDC (2.6 mg, 0.013 mmol) in 0.2 ml cold DMF and then added to the reaction mixture. After an additional 24 h, the reaction mixture was diluted with EtOAc, and washed several times with water and then brine. The organic layer was dried over Na₂SO₄, filtered and condensed. Preparative TLC provided the purified product (5%MeOH/DCM); 1.9 mg isolated, yield=26%.

¹H NMR ((CD₃)₂CO), 400 MHz) 8.36 (d, 2H, J = 1.7 Hz), 7.52-7.63 (m, 4H), 6.97 (t, 1H, J = 8.0 Hz), 6.66 (dd, 1H, J = 8.9, 2.5 Hz), 6.26 (dd, 1H, J = 7.8, 1.4 Hz), 6.22 (m, 1H), 6.17 (dd, 1H, J = 8.1, 2.1 Hz), 6.02 (bs, 1H), 5.10 (m, 1H), 4.43-4.64 (m, 2H), 4.37 (m, 1H), 3.81 (t, 2H, J = 6.3 Hz), 3.63 (s, 2H), 3.19-3.41 (m, 4H), 3.03 (s, 6H), 1.69 (m, 2H), 1.53 (m, 2H), 1.41 (m, 2H).

MS (ESI), m/z: calculated 802.14, found 803.1 $(M+1)^+$.

- 1 Asso, V.; Ghilardi, E.; Bertini, S.; Digiacomo, M.; Granchi, C.; Minutolo, F.; Rapposelli, S.; Bortolato, A.; Moro, S. Macchia, M. *ChemMedChem*, **2008**, *3*, 1530.
- 2 Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373.
- Beyer, M.; Fritscher, J.; Feresin, E.; Schiemann, O. J. Org. Chem. 2003, 68, 2209.
- 4 Zhu, W.; Ma, D. Chem. Comm. 2004, 888.
- 5 Chemistry of Heterocyclic Compounds volume 41, No 4, 2005, pg 426.
- 6 Weissman, S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70, 1508.
- 7 Maegawa, Y.; Goto, Y.; Inagaki, S.; Shimada, T. Tetrahedron Letters, 2006, 47, 6957.
- 8 Gundersen, E. G. U.S. Patent App. Publ. (2005) US 2005070592 AI 20050331.
- 9 Guangyou, Z.; Yuquing, L.; Zhaohui, W.; Nohira, H.; Hirose, T. Tetrahedron: Asymmetry, 2003, 14, 3297.
- 10 Ravlee, I.; Sivakumar, R.; Muruganantham, N.; Anbalagan, N.; Gunasekaran, V.; Leonard, J. T. Chem. Pharm. Bull. 2003, 51, 162.
- Manetti, F.; Santucci, A.; Locatelli, G. A.; Maga, G.; Spreafico, A.; Serchi, T.; Orlandini, M.; Bernardini, G.; Caradonna, N. P.; Spallarossa, A.; Brullo, C.; Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Hoffmann, O.; Bologna, M.; Angelucci, A.; Botta, M. J. Med. Chem. 2007, 50, 5579.
- 12 Harbert, C. A.; Plattner, J. J.; Welch, W. M.; Weissman, A.; Koe, B. K. J. Med. Chem. 1980, 23, 635.
- 13 Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A. Eur. J. Org. Chem. 2004, 3597.
- 14 Ludwig, J.; Bovens, S.; Brauch, C.; Elfringhoff, A. S.; Lehr, M. J. Med. Chem. 2006, 49, 2611.
- 15 Ponce, M. A.; Erra-Balsells, R. J. Heterocyclic Chem. 2001, 38, 1087.
- 16 Morcuende, A.; Ors, M.; Valverde, S.; Herradón, B. J. Org. Chem. 1996, 61, 5264.
- 17 Tatsumi, R.; Fujio, M.; Satoh, H.; Katayama, J.; Takanashi, S.; Hashimoto, K.; Tanaka, H. et al. J. Med. Chem. 2005, 48, 2678.
- 18 Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
- 19 Cosyn, L.; Palaniappan, K. K.; Kim, S.-K.; Duong, H. T.; Gao, Z.-G.; Jacobson, K. A.; Van Calenbergh, S. J. Med. Chem. 2006, 49, 7373.
- 20 Basle, E.; Jean, M.; Gouault, N.; Renault, J.; Uriac, P. Tetrahedron Letters 2007, 48, 8138.