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Supplementary Methods– 1 
 2 

PNPOx PMP to PLP conversion assay. The rate of PMP conversion to PLP by the 3 

FMN dependent MSMEG_5675 was determined using 0.5 µM of the enzyme 4 

incubated with 200µM PMP and 100µM FMN in Tris pH 7.5, time points were taken 5 

every time 10 minutes and quantified on an Agilent 1200 HPLC based on previously 6 

published methods (Bisp et al., 2002). Briefly, PLP and PMP were separated on a 7 

Phenomenex (USA) Synergi 2.5µ hydro-RP 100A column equilibrated with 1-8 

octanesulfonic acid and 1.2mM triethylamine with 33mM phosphoric acid, adjusted to 9 

pH 2.15 with KOH (mobile phase A) at 1ml/min. The compounds were separated over 10 

a linear gradient from 0% acetonitrile to 20% acetonitrile over 1 min followed by an 11 

increase to 40% acetonitrile over 4.5 minutes, the column was subsequently re-12 

equilibrated in mobile phase A, prior to the subsequent injection. Rates were 13 

determined as the loss of the substrate against a standard curve and calculated using 14 

Chemstation.  15 
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Fig. S1 Thin layer chromatograms of aflatoxin degradation by M. smegmatis and 1 

transposon mutated strains. For panel A, M. smegmatis soluble extract was incubated 2 

with aflatoxin overnight and separated by TLC: lane 1, aflatoxin only; lane 2, 3 

aflatoxin and soluble extract; lane 3 aflatoxin and boiled soluble extract. Panel B is a 4 

representative TLC of cultures of M. smegmatis transposon mutants incubated for 19 5 

hours with aflatoxin; the culture names are shown. Sequencing of the three mutants 6 

unable to degrade aflatoxin shown here revealed that the transposon had inserted in 7 

the N-terminal half of FGD for 8.11G and the C-terminal half of FbiC for 17.7G and 8 

19.7E.  9 
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Fig. S2. Biosynthetic pathways of the cofactors F420 and FMN. Both FMN (yellow 1 

box) and F420 (green box) utilize the same biosynthetic pathway from GTP to a 2 

phosphorylated intermediate (5-amino-6-ribityl-2butanone 4-phosphate). Riboflavin is 3 

synthesized by the condensation of the dephosphorylated intermediate with a four-4 

carbon precursor (red) derived from ribulose 5-phosphate and subsequently re-5 

phosphorylated to form FMN. Alternatively, in Mycobacteria, FbiC catalyzes the 6 

formation of Fo by condensation of the dephosphorylated intermediate with the 4-7 

hydroxy-phenylpyruvate (red). FbiA and FbiB catalyze the addition of the 8 

phospholactone and γ-linked glutamates, respectively. FGD utilizes glucose-6-9 

phosphate to reduce F420 to F420H2, which is subsequently utilized as a cofactor for 10 

FDR catalyzed reactions.  11 
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Fig. S3. Gel filtration chromatography of AFG1 degrading fractions from M. 1 

smegmatis. Molecular weight standards (panels A and E) and three fractions from M. 2 

smegmatis (panels B - D) were separated by gel filtration chromatography. The 3 

retention time and molecular weight of the standards are shown, and the active 4 

fractions from the M. smegmatis purified fractions are highlighted. The molecular 5 

weights of the active fractions were calculated by plotting the molecular weight 6 

standards. The three M. smegmatis fractions were purified by a 40-70% ammonium 7 

sulfate cut followed by hydrophobic interaction chromatography prior to the gel 8 

filtration chromatography. 9 
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Fig. S4. Sequence alignment and structural domains. Amino acid sequences of the 1 

FDR-A and -B enzymes from M. smegmatis were aligned and the secondary structural 2 

elements of MSMEG_3356 and MSMEG_3380 shown (panel A and B, respectively).  3 

Panel C shows the alignment of the PNPOx enzymes from M. smegmatis 4 

(MSMEG_5675), M. tuberculosis (rv2607), H. sapiens and E. coli with the secondary 5 

structural elements of rv2607 shown (Pedelacq et al., 2006). β strands are shown as 6 

blue arrows and α helices as red cylinders. Identical amino acids are shown as red 7 

letters, conserved residues as blue, homologous residues as green, and weakly similar 8 

grey. The yellow triangles highlight the highly conserved glycine residue in the loop 9 

between β strands 1 and 2. The yellow diamond highlights the conserved (putative) 10 

phosphate binding residue, Trp in FDR-A and Lys in FDR-B and PNPOx.  11 
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Table S1 – Proteomics/mass spec data 1 

TIGR 
locus tag 
MSMEG 

NCBI 
accession 
number 

MW Distinct 
peptides 

 %AA 
coverage 

Mean 
Peptide 
Spectral 
Intensity 

Pfam 
designation 

E value Phyre Fold  
E value to 
Rv2991* 

3380 ABK72884 14629 4 38 1.42 x106 pfam01243 6x10-13 2.5x10-14 
2027 ABK75334 18021 5 55 2.42 x107 pfam04075 4x10-33 6.3x10-3 

5717 ABK72164 15873 3 24 6.49 x106 pfam01243 7x10-6 6.6x10-15 
3004 ABK74167 16489 6 56 6.55 x106 pfam04075 8x10-32 1.3x10-3 

*Phyre analysis of all proteins gave the lowest E value scores to M. tuberculosis 2 

protein rv2991 (non published sequence coordinates available on Phyre). They belong 3 

to the FMN-binding split barrel superfamily, PNP-oxidase like enzymes.  4 
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Table S2 – Number of putative FDR-A and -B enzymes in the Actinomycetale species 1 

referred to in this study.  2 

# of putative proteins  

Species 

Genome 

accession 

number 

PNPOx FDR-A FDR-B 

M. smegmatis CP000480 1 15 13 

M. tuberculosis 

H37Rv 

BX842578 

 

1 6 7 

M. vanbaalenii CP000511 1 13 20 

Rhodococcus 

jostii sp. RH11 

CP000631 1 

 

13 

 

12 

Arthobacter sp 

FB242 

CP000454 

 

1 0 1 

Streptomyces 

coelicolor 

AL939116 

 

1 4 11 

Frankia alni CT573213 1 18 17 

Nocardioides sp. 

JS614 

CP000509 

  

1 4 5 

M. Gilvum3 CP000656 1 12 11 

 3 

1. Rhodococcus jostii sp. RH1 shares 96% nucleotide identity in 16S DNA 4 

sequence to the aflatoxin degrading N. corynebacterioides (DSM20151) 5 

referred to in the text. No 16S DNA was available for R. erythropolis (DSM 6 

14303).  7 

2. The genome sequence of Arthobacter sp FB24 was used for Arthrobacter sp. 8 

KW-ES as it shared 98% sequence identity to the 16S DNA. 9 

3. M. Gilvum shared 97% identity to the 16S DNA sequence of the aflatoxin 10 

degrading M. fluoranthenivorans (DSM 44556) 11 
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Table S3 – Primers for the expression work  1 

Primer name Family Sequence 

5126 attB1 FbiC  AAAAAGCAGGCTTAGTGGATGAATCTCGACTC  

5126 attB2 FbiC AGAAAGCTGGGTACTACGCGGCCAGGGGCGC 

3380 attB1 FDR-P AAAAAGCAGGCTCCATGGTCGCCGTGC 

3380 attB2 FDR-P AGAAAGCTGGGTCTACTGCTTGCTGAACG 

5717 attB1 FDR-P AAAAAGCAGGCTCGATGGCCCTTCCCAAAG  

5717 attB2 FDR-P AGAAAGCTGGGTTCAGACCGAGCCCAGG 

0048 attB1 FDR-P AAAAAGCAGGCTTAATGTCCGACGAGGAGATC 

0048 attB2 FDR-P AGAAAGCTGGGTATCACGAGTTCAGGTACTG 

2791 attB1 FDR-P AAAAAGCAGGCTTAATGAAACTCAACGACGCCG 

2791 attB2 FDR-P AGAAAGCTGGGTATCACGACACCCAGGGGCC 

5675 attB1 FDR-P AAAAAGCAGGCTTAGTGGGGATACCGGACGAT 

5675 attB2 FDR-P AGAAAGCTGGGTACTAGGGCTGGAGCCGTTC 

5819 attB1 FDR-P AAAAAGCAGGCTTATTGAGGTCCTACCGTGGC 

5819 attB2 FDR-P AGAAAGCTGGGTATCAGACCGTTCGTATATC 

6848 attB1 FDR-P AAAAAGCAGGCTTAGTGGGGACGTTTGTCATTTC 

6848 attB2 FDR-P AGAAAGCTGGGTATCAGAGCCGGCCGACGGT 

5170 attB1 FDR-P AAAAAGCAGGCTTAATGGGGGCGCGTCAGGTG 

5170 attB2 FDR-P AGAAAGCTGGGTATCAGCGCATGCCGGGCGGCA 

2027 attB1 FDR-A AAAAAGCAGGCTTAGTGACACCTGCGCAC 

2027 attB2 FDR-A AGAAAGCTGGGTCTATTCGACGATGAACACG 

3004 attB1 FDR-A AAAAAGCAGGCTTAATGACCGACGATTCGATC 

3004 attB2 FDR-A AGAAAGCTGGGTGGCGCGGATCAATTCG 

3356 attB1 FDR-A AAAAAGCAGGCTTAATGAGCGCACCTGAGGAC 

3356 attB2 FDR-A AGAAAGCTGGGTACTACGTGCGCGTGAGGGC 

5998 attB1 FDR-A AAAAAGCAGGCTTAATGGCCGACACTTCCCGT 

5998 attB2 FDR-A AGAAAGCTGGGTACTAAGCCGGGTCGCAGAT 

2850 attB1 FDR-A AAAAAGCAGGCTTAATGAACAACCAGGTGATC 

2850 attB2 FDR-A AGAAAGCTGGGTATCAGACGCGCTGCAACTC 

5030 attB1 FDR-A AAAAAGCAGGCTTATTGCTGCACGACAAGGTC 

5030 attB2 FDR-A AGAAAGCTGGGTACTAGCTCACGGGCGTCAG 

AttB1 adapter  GGGGACAAGTTTGTACAAAAAAGCAGGCT 

AttB2 adapter  GGGGACCACTTTGTACAAGAAAGCTGGGT 

FGD forward FGD CGCATATGGCTGAATTGAAGCTAGGTTAC 

FGD reverse FGD CGGGATCCTCAGGCCAGCTTGCGCAACCG 

pDONR201 seq forward   TCGCGTTAACGCTAGCATGGATCTC  

pDONR201 seq reverse  GTAACATCAGAGATTTTGAGACAC 

3380TEV attB1  GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTATTTT

CAGGGAATGGTCGCCGTGCCCGA 

3356TEV attB1  GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGAAAACCTGTATTTT
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