SUMMARY OF SUPPLEMENTAL FIGURES

Supplemental Figure I

Characteristics of the physiological and pathological cardiac hypertrophy mice model (swimming and TAC). Additional immunohistochemistry of proliferation markers including z-stack orthogonal views.

Supplemental Figure II

Preliminary follow up data on eight transcription factors identified using the Quanttrx screen

Supplemental Figure III

 $C/EBP\beta$ siRNA and adenoviral over expression data in vitro. ANP/BNP levels and target gene expression with $C/EBP\beta$ over expression.

Supplemental Figure IV

AKT over expression in vitro and its effect on C/EBP β and target genes. Expression levels of exercise-induced genes after TAC surgery. PGC1 α over expression and cell sizes.

Supplemental Figure V

CITED4 gain- and loss of function characteristics in vitro and proliferation target gene expression.

Supplemental Figure VI

Characteristics of the C/EBP β heterozygous mouse including cardiac C/EBP β levels, target gene expression, heart weight, exercise capacity and proliferation markers.

Supplemental Figure VII

Ultrasound data from C/EBP $\beta^{+/-}$ and control mice subjected to TAC. Heart weight and C/EBP β levels of exercised C/EBP $\beta^{+/-}$ mice.

Supplemental Table I

Genes altered in the Quanttrx screen from exercised mice

Supplemental Table II

Genes altered in the Quanttrx screen from mice subjected to TAC

Supplemental Table III

Baseline echocardiac parameters of C/EBP $\beta^{+/-}$ mice at baseline.

Supplemental Table IV

List of primers used

LEGENDS TO SUPPLEMENTAL FIGURES

Supplemental figure I

A-D. Data from exercised and TAC-operated mice with respective controls (n=4). **A.** Heart weights normalized to body weights (multiplied by 1000). **B.** Left Ventricular Posterior Wall in diastole (LWPWd) + Left Ventricular Septum in diastole (LVSd). Data presented as mm. **C.** Cell size measurement of cardiomyocytes after cardiac WGA staining in indicated groups. More than 100 cells from each group (n=4) was measured. **D.** mRNA levels of ANP and BNP normalized to 18s levels in indicated groups. **E.** Quantification of CD31 positive cell area relative to total tissue area from exercised and control mice. **F.** Quantification of cells positive with staining using an anti-fibroblast antibody (abcam) in exercised and control mice. **G.** Confocal images of Phospho-histone3 staining (green) counterstained with dapi (blue) and α -actinin (green) in cardiac tissue from exercised mice. Upper left: Cardiomyocyte in prophase with nuclear condensation. Upper right: Cardiomyocyte at end of prophase. Lower left: Cardiomyocyte undergoing cariokenesis and lower right: Cardiomyocyte in telophase after nuclear separation. **H.** Confocal stack of BrdU staining with orthogonal view displaying a nuclei within cardiomyocyte (upper panel) and a nuclei outside cardiomyocyte (lower panel). * indicates p<0.05 using students t-test.

Supplemental figure II

A. qPCR validation of Quanttrx-identified transcription factors with expression changes in either the physiological or pathological hypertrophy model (n=4). All changes are p<0.05 using students t-test. **B**. Cardiomyocytes and non-cardiomyocytes separated from rat neonatal hearts using density gradient centrifugation. Samples were analyzed for indicated gene expression normalized to 18S, and cardiomyocytes set to 1. **C**. Adenoviral over expression of

indicated genes in rat neonatal cardiomyocytes followed by size measurements. Data is expressed as percent of GFP control. **D**. Western Blot against C/EBP β in cardiomyocytes (CM) and non-cardiomyocytes with actin as loading control. **E**. Correlation between the percent change seen in the exercise model (y-axis) and the TAC-model (x-axis). All Quanttrx transcription factors significantly altered in either model are included. * indicates p<0.05 using students t-test

Supplemental figure III

A. SiRNA knockdown of C/EBP β in primary cardiomyocytes assayed using RT-PCR. Two siRNA constructs and two control siRNA's was used. Data is normalized to respective control and 18S. **B**. Western blot against C/EBP β and tubulin from primary cardiomyocytes transfected with control or C/EBP β siRNA #2. **C**. mRNA levels of ANP and BNP in rat neonatal cardiomyocytes transfected with control or C/EBP β siRNA with or without 24 hours treatment with phenylephrine (PE). **D**. Over expression with C/EBP β adenocirus in primary cardiomyocytes followed by western blot analysis against C/EBP β . * indicates p<0.05 vs respective control and § vs control siRNA +PE using one-way ANOVA.

Supplemental figure IV

A. Normalized mRNA levels of indicated genes following C/EBP β adenoviral over expression in primary cardiomyocytes. **B-C**. Rat neonatal cardiomyocytes transduced with indicated adenoviral constructs followed by RT-PCR analysis of indicated genes normalized to 18S. **D**. mRNA expression levels of indicated genes from cardiac samples of sham- or TAC operated mice 2 weeks after intervention (n=4). **E**. Rat neonatal cardiomyocytes transduced with PGC1 α or GFP expressing adenovirus followed by size measurements. * indicates p<0.05 using students t-test (A, D and E) and § marks p<0.05 vs AKTwt + GFP using oneway ANOVA (B-C).

Supplemental figure V

A. Pro-proliferative genes up regulated in endurance exercise from expression analysis experiment. **B**. Western blot against CITED4 from rat neonatal cardiomyocytes treated with control or CITED4 expressing adenovirus. **C**. mRNA analysis of CITED4 after transient transfection with control or CITED4 siRNA as annotated. **D**. Normalized SRF mRNA levels with GFP or CITED4 adenoviral over expression. **E-F**. mRNA levels of n-myc and cyclinD1 in heart samples following endurance exercise (**E**) or in rat neonatal cardiomyocytes over expressing CITED4 (**F**). * indicates p<0.05 using students t-test

Supplemental figure VI

A-B. C/EBPβ mRNA (**A**) and protein (**B**) levels in heart from wild type (n=5) and C/EBPβ^{+/-} (n=7) mice. mRNA levels were normalized to the 18S gene. **C**. Expression of exerciseinduced genes in the C/EBPβ^{+/-} mice compared to wild type littermates (n=5 and 7 respectively). **D**. Heart weights of C/EBPβ^{+/-} mice compared to wild type littermates (n=4 and 5 respectively) at baseline. **E**. Maximal exercise capacity measured as described in the method section, in wt and C/EBPβ^{+/-} mice. **F**. PCNA western blot from wt and C/EBPβ^{+/-} mice with sub sequent quantification. Data is presented as PCNA-background normalized to β-actin. **G**. Quantification of ki67 positive cardiomyocyte nuclei (n=5 and 7 mice based on at least 20 images per mouse). * indicates p<0.05 using students t-test

Supplemental figure VII

A-B. Echocardiographic characteristics of wild type and C/EBP $\beta^{+/-}$ mice after TAC intervention (day 0). **A**. diastolic (left) and systolic (right) Left intraventricular diameter (LVD). **B**. the sum of either diastolic (left) or systolic (right) Intravetricular (IV) and Left Ventricular Posteriar Wall (LVPW) width. **C**. Heart weight in wild type and C/EBP $\beta^{+/-}$ mice after TAC intervention. **D**. C/EBP β expression levels in C/EBP $\beta^{+/-}$ and wild type mice after

the endurance exercise protocol. **E**. Heart weights normalized to body weight in C/EBP $\beta^{+/-}$ and wild type mice after the endurance exercise protocol. * indicates p<0.05 using students ttest.

Supplemental figure II

Supplemental figure III

Supplemental figure V

Supplemental Figure 6

Supplemental figure VII