SUPPORTING INFORMATION for "Promoting RNA helical stacking via A-minor junctions"

by Cody Geary, Arkadiusz Chworos and Luc Jaeger

A. Supplemental Tables

Table S1 A: List of A-minor junction motifs identified in known X-ray atomic structures.

The location of the A-minor junction is specified by the nt positions of it (type I) A-minor bp interaction. The A-minor junction motif has been identified at **16** independent locations in **7** different families of RNA molecules (16S and 23S rRNA, RNase P RNA, group IA3 and group II introns and TPP and M-box riboswitches). Ec: *Escherichia coli*; Tt: *Thermus thermophilus*; Hm: *Haloarcula marismortui*. Bs: *Bacillus subtilis*; Bst: *Bacillus stearothermophilus*; Oi: *Oceanobacillus iheyensis*; 2x_bulge; double bulge motif; 3WJ and 4WJ: three-way and four way junctions, respectively; a-d: at the level of their 2D structures, these junctions are part of more extended junctions (a, H30-31-32 is part of a 4WJ: b, H36-37-38-39 is part of a 6WJ: c. H67-68-69-70-71 is part of a 5WJ: d. these junctions are part of pseudoknots).

RNA molecule	PDR	Location A-minor	Loon/receptor A-minor junction (A-min I)	Is are part of pseu	Figure
KINA molecule		$\Delta(n1) \cdot g(n2) \cdot c(n3)$	motif (type of A-minor)	type	rigure
16S rRNA	10	//////////////////////////////////////		type	
Ec. 16S rRNA	2AVY	A196·G142·C221	GA/A-min I (type I/II)	4WL ABCD	\$3
Tt 16S rRNA	115E	A196:G142:C221	GA/A-min I (type I/II)	4WL ABCD	<u>S3</u>
Fc 16S rRNA	24VY	A959:G1221:C984	U(IIAA)U triloop/heliy A-min I (type I/II)	3WL ACD ^a	4
Tt 16S rRNA	115F	A959:G1221:C984	U(U(A A)U triloop/helix A-min I (type I/II)	3WL ACD ^a	4
23S rRNA	13.512	1055.01221.0504		JWJ_ACD	7
$E_{\rm C} 23S r R N \Delta$	24W4	A819.G942.C837	Sarcin loop/helix A_min I (type I)	4WL ABCD ^b	\$3
Tt 23S rRNA	2101	A819:G942:C837	Sarcin loop/helix A_min I (type I)	$4WI ABCD^{b}$	\$3
Um 238 rDNA	1112	A012:U10/1:C030	Sarcin loop/helix A min I (type I)	4WL ABCD ^b	S3
$F_{c} 23S rRNA$	$2\Delta WA$	A1085:G1055:C1104	II(IIAA)A triloop/helix A min I (type I/II)	4WJ_ABCD	35
Tt 225_IKNA	2101	A1085;G1055;C1104	U(UAA)A triloop/helix A min I (type I/II)	4WI APCD	4
Lm 228 rDNA	1112	A1180:C1150:C1208	C(UAA)A throop/helix A-min.J (type I/II)	4WJ_ABCD	4
Ea 225 PNIA		A1109.01139.01206	CANAA (haliy A min L (type I/II)	4WJ_ABCD	4,50C
EC_255_IKINA	2A w 4	A1545:01405:C1440	GA:NAA/nenx A-min.J (type I/II)	4wJ_ABCD	4, 5B, 7C, S7A, S8D
Tt_23S_rRNA	2J01	A1545:G1465:C1446	GA:NAA/helix A-min.J (type I/II)	4WJ_ABCD	4
Hm_23S_rRNA	1JJ2	A1632:G1568:C1553	GNRA/helix A-min.J (type I/II)	4WJ_ABCD	3A, 4, 7A,
					S6B, S8B
Ec_23S_rRNA	2AW4	A1928:G1904:C1836	C(UAA)G triloop/2x_bulge A-min.J (type I/II)	4WJ_ABCD ^c	4, 6, S8H
Tt_23S_rRNA	2J01	A1928:G1904:C1836	C(UAA)G triloop/2x_bulge A-min.J (type I/II)	4WJ_ABCD ^c	4,6
Hm 23S rRNA	1JJ2	A1969:G1945:C1892	U(UAA)G triloop/2x bulge A-min.J (type I/II)	4WJ ABCD ^c	4, 6, 7B
Ec 23S rRNA	2AW4	A1969:C1833:G1972	Bulged-G/helix A-min.J (type I/Ib)	3WJ ACD ^c	S10
Tt 23S rRNA	2J01	A1969:U1833:A1972	Bulged-G/helix A-min.J (type I/Ib)	3WJ ACD ^c	S10
Hm 23S rRNA	1JJ2	A2010:C1889:G2013	Bulged-G/helix A-min.J (type I/Ib)	3WJ ACD ^c	S10
Ec 23S rRNA	2AW4	A2388:G2280:C2260	A:A internal loop/helix A-min.J (type I/I)	3WJ ACD ^d	S10
Tt 23S rRNA	2J01	A2388:G2280:C2260	A:A internal loop/helix A-min.J (type I/I)	3WJ ACD ^d	S10
Hm 23S rRNA	1JJ2	A2425:G2314:C2294	A:A internal loop/helix A-min.J (type I/I)	3WJ ACD ^d	S10
Hm 23S rRNA	1JJ2	A243:G274:C376	Internal loop/helix A-min.J (type I/II)	3WJ ACD	<i>S10</i> , 7G
Ec 23S rRNA	2AW4	A2565:G2545:C2520	U(UAA)A T-loop/helix A-min.J (type I/II)	4WJ ABCD	4
Tt 23S rRNA	2J01	A2565:G2545:C2520	U(UAA)A T-loop/helix A-min.J (type I/II)	4WJ ABCD	4
Hm 23S rRNA	1JJ2	A2600:G2580:C2555	U(UAA)A T-loop/helix A-min.J (type I/II)	4WJ ABCD	4.5B
RNase P type B					.,
Bs	1NBS	A178:G132:C234	U(GAA)A triloop/helix A-min_I (type I/II)	4WJ ABCD	4
Bst	2A64	A188:G139:C244	U(GAA)A triloop/helix A-min_J (type I/II)	4WJ ABCD	4
TPP riboswitch					
	2CKY	A72:C38:G8	GA:AA@helix-end/helix A-min.J (type I/I) (Expanded kink turn)	3WJ_ABC	<i>\$10</i> , 7D
	2GDI	A84:C50:G16	GA_shared/helix A-min.J (type I/I) (Expanded kink turn)	3WJ_ABC	<i>\$10</i>
	2CKY	G30:G11:G34	T-loop/helix A-min.J (type I/II)	3WJ ACD	<i>S3</i>
	2GDI	G42:G19:A47	T-loop/helix A-min.J (type I/II)	3WJ ACD	<u>S</u> 3
M-Box riboswitch					
na bow noosnuch	20B7	A117:G84:C57	UA_h/helix A-min I (type I/Ib)	3WL ARC	S10
Group I intron	2202	1111.001.037		5.115_7IDC	510
Twort intron	1Y0Q	A157:U125:A189	Bulged-G/helix A-min.J (type I/Ib)	3WJ_ACD ^d	<i>S10</i>
Group II intron					1
Oi intron	3BWP	A49:C197:A189	Bulged-G/helix A-min, I (type I)	3WJ ACD ^d	<i>S10</i> , 7F
	22.01				~. ~,

Table S1 B: List of 2bp_double_bulge motifs ($2bp_2x_bulge$) identified in known X-ray atomic structures. The location of the $2x_bulge$ is specified by the two middle WC bps. The S8-like and P12-like $2bp_2x_bulge$ motifs have been identified at **2** and **4** independent locations, respectively. Tma: *Thermatoga maritima*.

RNA	PDB	RNA motif	WC bps location	Modularity	Figure
molecule	ID	(location with	Xa(n1)Ya:Yb(n2)Xb		
		2D structure)			
		S8-like			
		2bp_2x_bulge			
16S_rRNA					
Ec_16S_rRNA	2AVY	H21	A596G:C643U	S8 binding site	S7A
Tt_16S_rRNA	1J5E	H21	C596G:C643G	S8 binding site	S7A
23S_rRNA					
Ec_23S_rRNA	2AW4	H89	A2459U:U2492U	GNRA-like/receptor interaction	S7A
Tt_23S_rRNA	2J01	H89	A2459U:U2492U	GNRA-like/receptor interaction	S7A
Hm_23S_rRNA	1JJ2	H89	G2494U:U2527U	GNRA-like/receptor interaction	S7A ,S7B, S8I
		P12-like			
		2bp_2x_bulge			
23S_rRNA					
Ec_23S_rRNA	2AW4	H68	G1840U:A1901C	triloop/2x_bulge A-minor junction	6, S8H
Tt_23S_rRNA	2J01	H68	G1840U:A1901C	triloop/2x_bulge A-minor junction	6
Hm_23S_rRNA	1JJ2	H68	G1896U:A1942C	triloop/2x_bulge A-minor junction	6, 7B
5S_rRNA					
Ec_5S_rRNA	2AW4	H2	G0016C:G0067C	Loop A 3WJ-BCD	
Tt_5S_rRNA	2J01	H2	G0016C:G0067C	Loop A 3WJ-BCD	
Hm_5S_rRNA	1JJ2	H2	G0014C:G0066C	Loop A 3WJ-BCD	
RNase P RNA					
Bs Type B	1NBS	P10/P11	G0180U:A0321C	triloop/helix A-minor junction	4
Bst Type B	2A64	P10/P11	G0190U:A0241C	triloop/helix A-minor junction	4
Tma Type A	2A2E	P10/P11	G0107G:C0199C		
Tt Type A	1U9S	P10/P11	G0115U:A0227C		
Tt Type A	1U9S	P12/P13	C0139G:C0160G	triloop/2bp_2x_bulge interaction	5B, S8G

Name	Sequence
	GGAUGGGAAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUAAGUCGAUG
GAAA/CA:UG_A (wt)	AAGUGGACACGUCGAUUUAGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUAAGUCGAUG
GAAA/CA:UG_B (wt)	AAGCCUCCACGUCGAUUUAGUCAUUCUU
	GGAUGGGUGACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUAAGUCGAUG
GUGA/CA:UG_A	AAGUGGACACGUCGAUUUAGUCAUUCUU
	GGAUGGGUGACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUAAGUCGAUG
GUGA/CA:UG B	AAGCCUCCACGUCGAUUUAGUCAUUCUU
——————	GGAUGGUUCGCGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUAAGUCGAUG
UUCG/CA:UG A	AAGUGGACACGUCGAUUUAGUCAUUCUU
	GGAUGGUUCGCGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUAAGUCGAUG
UUCG/CA:UG_B	AAGCCUCCACGUCGAUUUAGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAAGUCGAUG
GAAA/GG:CC_A	AAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAAGUCGAUG
GAAA/GG:CC_B	AAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGGGUAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAAGUCGAUG
GUAA/GG:CC_A	AAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGGGUAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAAGUCGAUG
GUAA/GG:CC_B	AAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGUUAAAGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAAGUCGAUGA
UUAAA/GG:CC_A	AGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGUUAAAGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAAGUCGAUGA
UUAAA/GG:CC_B	AGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAAGUCGAUGA
CUAAG/GG:CC_A	AGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAAGUCGAUGA
CUAAG/GG:CC_B	AGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGUUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAAGUCGAUGA
UUAAG/GG:CC_A	AGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGUUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAAGUCGAUGA
UUAAG/GG:CC_B	AGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUAAGUCGAUG
GAAA/11nt motif_A	AAGUGGACACGUCGAUAUGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUAAGUCGAUG
GAAA/11nt motif_B	AAGCCUCCACGUCGAUAUGUCAUUCUU
	GGAUGGGGAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUAAGUCGAUG
GGAA/11nt motif_A	AAGUGGACACGUCGAUAUGUCAUUCUU
	GGAUGGGGAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUAAGUCGAUG
GGAA/11nt motif_B	AAGCCUCCACGUCGAUAUGUCAUUCUU
/- 4	GGAUGGGGAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUGUGUCGAUG
GGAA/R1_A	AAGUGGACACGUCGAAUCUGUCAUUCUU
	GGAUGGGGAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUGUGUCGAUG
GGAA/R1_B	AAGCCUCCACGUCGAAUCUGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCUGUGUCGAUG
GAAA/RI_A	AAGUGGACACGUCGAAUCUGUCAUUCUU
	GGAUGGGAAACGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCUGUGUCGAUG
GAAA/RI_B	
UUAAG_H08_HIII_A (wt)	
μ	
UCARG7H08_HIL_B (WC)	
CUAAC/H68 Hm A	
CUAAC/H68 Hm B	
IIIIAUG/H68 Hm A	
IIIIAIIG/H68 Hm B	
CIIAAG/H68 EC A (w+)	
("'''''''''''''''''''''''''''''''	

	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCCGGUGCGAUG
CUAAG/H68_Ec_B (wt)	AAGCCUCCACGUCGUAAACGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCCGGUGCGAUG
CUAAG/H68_Tt_A (wt)	AAGUGGACACGUCGUGAACGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCCGGUGCGAUG
CUAAG/H68_Tt_B (wt)	AAGCCUCCACGUCGUGAACGGUCAUUCUU
	GGAUGUUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCCAGUGCGAUG
UUAAG/H68_Sc_A (wt)	AAGUGGACACGUCGUAAACGGUCAUUCUU
	GGAUGUUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCCAGUGCGAUG
UUAAG/H68_Sc_B (wt)	AAGCCUCCACGUCGUAAACGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAGCGGCGAUG
CUAAG/P12_(#A)_A	AAGUGGACACGUCGUGCGGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAGCGGCGAUG
CUAAG/P12_(#A)_B	AAGCCUCCACGUCGUGCGGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCACGGCGAUGA
CUAAG/P12_neg(#A)_A	AGUGGACACGUCGUGCGGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCACGGCGAUGA
CUAAG/P12_neg(#A)_B	AGCCUCCACGUCGUGCGGGUCAUUCUU
	GGAUGCUAUGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCAGCGGCGAUG
CUAUG/P12_(#A)_A	AAGUGGACACGUCGUGCGGGUCAUUCUU
	GGAUGCUAUGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCAGCGGCGAUG
CUAUG/P12_(#A)_B	AAGCCUCCACGUCGUGCGGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCGAUGGCGAUG
CUAAG/P12_(#B)_A	AAGUGGACACGUCGAUCAGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCGAUGGCGAUG
CUAAG/P12 (#B) B	AAGCCUCCACGUCGAUCAGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCCGAUGGCGAUG
CUAAG/P12 (#C) A	AAGUGGACACGUCGCACAGGUCAUUCUU
	GGAUGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCCGAUGGCGAUG
CUAAG/P12 (#C) B	AAGCCUCCACGUCGCACAGGUCAUUCUU
	GGAUGCGAGCUUCGGUGAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCC
Internal GNRA/H57 Ec A	AAGUCGAUGAAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGCGAGCUUCGGUGAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCC
Internal GNRA/H57 Ec B	AAGUCGAUGAAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGCGAGCUUCGGUGACGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGCC
Internal GNRA/H57 Ec neg A	AAGUCGAUGAAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGCGAGCUUCGGUGACGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGCC
Internal GNRA/H57 Ec neg B	AAGUCGAUGAAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGCGAAGCUUCGGCUAAGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGC
UA h GNRA/U999 A	CAAGUCGAUGAAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGCGAAGCUUCGGCUAAGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGC
UA h GNRA/U999 B	CAAGUCGAUGAAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGAUGCGAAGCUUCGGCUACGGUGGUCCGAUCUGAAGGAGGCACGGAUUGGACUACGC
UA h GNRA/U999 neg A	CAAGUCGAUGAAGUGGACACGUCGAUUUGGUCAUUCUU
	GGAUGCGAAGCUUCGGCUACGGUGGUCCGAUCUGAAGUCCACACGGAUUGGACUACGC
UA h GNRA/U999 neg B	CAAGUCGAUGAAGCCUCCACGUCGAUUUGGUCAUUCUU
	GGGAACCUGAGGUUCGCUUCAACCGUCCGAUCUGAAGGAGGCACGGAUUGGACGGUAC
Hairpin Junction (fiber) A	GAAGUCGAUGAAGUGGACACGUCGAUUUCGUGGUUCCUU
(12001)	GGGAACCUGAGGUUCGCUUCAACCGUCCGAUCUGAAGUCCACACGGAUUGGACGGUAC
Hairpin Junction (fiber) B	GAAGUCGAUGAAGCCUCCACGUCGAUUUCGUGGUUCCUU
	GGGACGUGGUGGUUCGCUACCUGAGUCCGAUCUGAAGGAGGCACGGAUUGGACUCAAC
Hairpin Junction (dimer) A	CAAGUCGAUGAAGUGGACACGUCGAUUUGGUACGUCCUU
	GGGACGUGGUGGUUCGCUACCUGAGUCCGAUCUGAAGUCCACACGGAUUGGACUCAAC
Hairpin Junction (dimer) B	
marrprin concercin (armer)_p	

B. Supplementary References

- 1. Leontis, N.B. and Westhof, E. (2001) Geometric nomenclature and classification of RNA base pairs. *RNA*, **7**, 499-512.
- 2. DeLano, W.L. (2002) The PyMOL Molecular Graphics System.

C. Supplementary Information Figure Captions

Figure S1: Three-dimensional models of RNA four-way junction conformers. The conformers I, II, III, IV and O predicted for RNA four-way junctions presented in Figure 1 were modeled in Swiss PDB viewer and rendered as three-dimensional stereo-view images.

Figure S2: Study of hairpin ribozyme junction. (A) The four-way junction of the hairpin ribozyme within its natural context, including the adjacent tertiary interaction. (B) H40-H41-H45 consensus from the 23S rRNAs from Archaea and Bacteria has similarities to the hairpin ribozyme junction, including a neighboring tertiary interaction at a similar distance from the junction. (C) Self-assembly native PAGE experiments with 4WJ-tectoRNAs taking advantage of hairpin ribozyme 4WJ junction in two different orientations. The gels were measured in presence of 1 mM Mg(OAc)₂ and TB 1X (see Materials and Methods). Lane m corresponds to the monomer A alone.

Figure S3: Extended A-minor junction network. Extended version of the network described in Figure 4, containing all identified A-minor junctions. Submotifs combine in multiple ways to generate a variety of functionally equivalent A-minor junction motifs. The lines on the network indicate which motifs can be combined. Interactions are indicated according to the Leontis-Westhof nomenclature (1) (see in box Legend).

Figure S4: Kissing loops used for 4WJ-tectoRNAs self-assembly. (A) Three-dimensional view of the DIS HIV kissing-loop (KL) interaction (PDB_ID: 1JJM) and motif diagram. (**B**) Schematic of the two different KL interactions L1-L1' and L2-L2' used in this study.

Figure S5: AFM analysis. (A) Representative AFM images of GUGA/CU:AG 4WJ-tectoRNA nanorings. (B) Histogram of the size distribution of nano-rings observed in the images from A. (C) The periodicity observed of bumpy features along one-dimensional tectoRNA fibers by AFM can vary related to the bending of the fibers. In the model of the conformer I fibers the 4WJ motif creates a bulky density with a periodic spacing between units of approximately ~9 nm. By AFM analysis, this periodic spacing is closer to ~10 nm, likely due to bending. To describe the shape expected for the rings composed of end-toend assembled units, products of the intermediate-length assembly were expected to have a circumference of length approximately 2N* (periodicity), where N is an integer greater than 1. A value of ~11 nm was measured for the periodicity in ring-circumferences. Experiments were performed as described in Materials and Methods.

Figure S6: Additional PAGE gels. (A) Self-assembly PAGE assay for composite GGAA/R(1)-receptor 4WJ tectoRNAs. (B) PAGE gels demonstrating the effect of combining different A+B units in the same assembly. Experiments were performed as described in Materials and Methods. (left to right) GAAA/CU:AG (A+B), GAAA/CU:AG (A) + GUAA/GG:CC (B), GUAA/GG:CC (A) + GAAA/CU:AG (B), GUAA/GG:CC (A+B). Lane m corresponds to the monomer A alone.

Figure S7: Study of GNRA-like/receptor interactions. (A) GNRA-like/receptor motif network showing the modularity of GA:NAA/helix, UAA:GAN/helix and L39-H89 motifs. Interactions are indicated according to the Leontis Westhof nomenclature (1) (see in box Legend in Figure S3). (B) Corresponding gel experiments with 4WJ-tectoRNAs taking advantage of GNRA-like motifs.

Figure S8: Three-dimensional representations of various A-minor interactions. On the left are shown a series of loop/helix A-minor interactions and junctions, on the right are loop/receptor A-minor interactions and junctions. In the stereo images, the interacting adenine loop is colored green. The Type I

A-minor binding site is colored blue while the Type II A-minor binding site is orange. All the A-minor loop/receptor interactions depicted include nt platforms shown in yellow with surface. Note that the color code on 2D diagrams does not correspond to the one on the 3D stereo images. (A) GyRA/helix A-minor interaction (Type I/IIP) (PDB_ID: 1JJ2); (B) GNRA/helix A-minor junction (Type I/IIP) (PDB_ID: 1JJ2); (C) triloop/helix A-minor junction (Type I/IIP) (PDB_ID: 1JJ2); (C) triloop/helix A-minor junction (Type I/IIP) (PDB_ID: 1JJ2); (D) GA:NAA/helix A-minor junction (Type I/IIP) (PDB_ID: 2AW4); (E) UAA:GAN/helix A-minor interaction (Type I/IIT) (PDB_ID: 2AW4); (F) GAAA/11nt-motif A-minor interaction (Type I/IIT) (PDB_ID: 1U6B); (G) L13-loop/P12-receptor A-minor interaction (Type I/IIT) (PDB_ID: 1U9S); (H) L70-triloop/H68-receptor A-minor junction (Type I/IIT) (PDB_ID: 2AW4); (I) GNRA-like/S8-like receptor A-minor interaction (Type I/IIT) (L39-H89) (PDB ID: 1JJ2). Images were rendered in Pymol (2).

Figure S9: Non-stoichiometric assemblies. Native PAGE assembly of non-stoichiometric mixes of tectoRNA fiber units A+B. By increasing the ratio of molecule B to molecule A, the self-assembly equilibrium is shifted towards the formation of B-A-B trimers. This was used to differentiate between the opened and cyclic dimers, and linear trimer. The experiment highlights differences between two functional classes of 4WJ motifs: more-flexible and more-rigid.

Figure S10: Three-way junction A-minor network. Extended A-minor motif network describing all the various A-minor junctions (3WJ) and their relationship with the Kink turn motif. Interactions are indicated according to the Leontis-Westhof nomenclature (1) (see in box Legend).

Figure S2

Figure S3

Figure S5

Figure S6

Figure S8

Figure S9

Figure S10