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1. Considerations Regarding Clustering 

Is clustering necessary? The mean rate classifier is applied directly on the spike-trains and 

therefore is not affected by clustering. The trajectory classifier can also operate directly on the 

unclustered activity vectors because it relies just on Euclidean distances. However, the 
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specificity classifier is dependent on clustering because it needs a finite set of patterns on 

which to compute statistics such as specificity and frequency of occurrence. Activity vectors 

cannot be directly used in this latter case and clustering must be performed to identify model 

vectors, because of the following reasons. Our approach (and others as well – see Baker and 

Gerstein [1]) does not binarize and bin multineuronal spike data, as is the case in other 

methods [2, 3] where a finite set of 2n vectors (n is the number of neurons) is obtained. By 

convolving spike trains with exponentially-decaying kernels and then sampling the resulting 

traces we obtain activity vectors with real-valued elements. As a consequence, activity vectors 

can represent an infinity of possible combinations of values and therefore there is virtually an 

infinite possible number of activity vectors. Two activity vectors will be considered 

mathematically different even if the difference is in a single element and it is infinitesimally 

small. Clustering solves this problem and yields a finite set of representative model vectors 

(patterns), albeit with the tradeoff of an approximation error. The specificity classifier can 

then operate on this finite set of representative patterns and can compute pattern-related 

statistics (stimulus specificity, frequency of occurrence, and so on). 

To be able to compare results across the specificity and trajectory classifiers, data were 

clustered first and only then used in classification for both these classifiers (both had the same 

input). Nevertheless, to test whether results could be different if we didn’t cluster data first, 

we reclassified data with the trajectory classifier by feeding it directly with activity vectors. 

We found that classification performance and its dependence on integration constant were 
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very similar (almost identical) with the case where data was first clustered (Figure S1). This 

indicates that clustering does not affect results and does not lead to any spurious conclusions. 

Kohonen  versus  K‐Means  clustering.  To verify that results were not a byproduct of 

clustering with Kohonen maps, we repeated the analysis in Figures 3D-F using K-Means 

clustering. For each integration time constant, we ran the classical K-Means algorithm 10 

times (with k=1000, to match the number of nodes in the Kohonen map) and applied the 

specificity and trajectory classifiers selecting the run that yielded the highest classification 

performance. In Figure S2 we compare the classification performance curves from Figures 

3D-F, which were obtained with 3D Kohonen clustering, with those obtained with K-Means 

clustering. In all cases curves were very similar, almost overlapping. Sometimes K-Means 

enabled slightly higher classification performance even if, in general, it had higher 

approximation error. Nevertheless, these differences were very small. Similar results were 

obtained also with Linde-Buzo-Gray clustering algorithm [4]. Thus, the particular clustering 

algorithm is of little importance to the results reported here. 

 

2. Classification 

Classifiers Explained Intuitively 

Classification is a crucial point for the message of the present study. Therefore, 

understanding how the classifiers were constructed and what conclusions may be drawn 

from their performance is essential. Classification always involves two important concepts: 
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input features and output classes. Input features represent the features of the data that are 

extracted and on which the classifier relies on in order to classify. For the three types of 

classifiers presented here, the input features were: mean firing rate vectors for the mean rate 

classifier, specificity of patterns for the specificity classifier, and average patterns in 

successive time windows for the trajectory classifier. The output classes were always 

represented by the identity of stimuli for a particular dataset: the direction of the drifting 

grating for sinusoidal grating datasets, the movie that was presented for natural movie 

stimuli, and the sequence of letters that was shown to the cat for the flashed letter sequences 

datasets. The classifiers find a correspondence (mapping function) between the input features 

and the output classes. How good this correspondence is, reflects to a large degree the 

informative value of the feature that the classifier relies on. 

After choosing the classifier, classification involves two distinct steps: training and testing. 

Training involves finding the mapping function from input features to output classes by 

‘learning’, for each class, either a function or a model of the input. Testing consists in 

identifying, for a new sample that was not used in training, the class it belongs to. Here, half 

the data (half of the trials) were used for training classifiers and half for testing. To eliminate 

any sampling bias, classification was repeated 1,000 times, and for every run trials were 

randomly half-split into disjoint train and test sets. Classification performance is measured in 

percent correct identifications of the class for the test set. Unlike statistical methods (e.g. effect 

size or significance), in which two different conditions are compared, classification 
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performance reflects how well, on average, a stimulus can be discriminated from all the other 

stimuli used in recording a particular dataset. 

The mean rate classifier. During training, an average rate vector, called model rate vector, 

is built as a model for each stimulus (see main text Eq. 7). During testing, when a new trial is 

presented to the classifier, a rate vector is first computed on the spike-trains corresponding to 

the trial (see main text Eq. 8). This rate vector is then compared to model rate vectors 

corresponding to all stimuli. The closest model vector is considered as a match and its 

stimulus is assigned as the identified stimulus for the trial (see main text Eq. 9). Classification 

performance is computed as the number of correct identifications divided by the total 

number of test trials. It reflects how well (fraction or percentage of cases) a stimulus can be 

discriminated from all the others, based on the mean firing rate. 

The  specificity  classifier. During training, the specificity of all patterns is computed for 

each stimulus. Only trials in the training set are used. Specificity of a pattern is a function of 

stimulus and takes values between 0 (not specific) and 1 (pattern only appeared for a given 

stimulus; see main text Materials and Methods). It reflects the estimated probability of the 

pattern to appear for a given stimulus across the set of stimuli. After training, a pattern has a 

given specificity assigned for each stimulus. Specificity of the pattern to a stimulus is 

computed simply as the number of cases in which the pattern appears for the stimulus 

divided by the total number of appearances of the pattern in the training set. As a 

consequence, specificity does not contain any information about the location of the pattern in 
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the trial (moment in time where the pattern appears). Therefore, the stimulus-locking of 

patterns is completely ignored. During testing, for a new test trial to be classified, a scoring 

vector is built that contains a score corresponding to each stimulus. For each pattern 

appearing in the trial, the specificity vector of the pattern (vector containing the specificities 

of the pattern to all stimuli) is added to the scoring vector (see main text Eq. 10). After all the 

patterns in the trial have been processed, the classification decision is reached: the stimulus 

with the highest corresponding value in the scoring vector is assigned to the test trial (see 

main text Eq. 11). Thus, this classifier’s performance reflects how specific to the true stimulus 

are the patterns appearing in the entire trial. 

A problem arises with both the specificity and mean rate classifiers. Different, dynamic, 

spatio-temporal stimuli may elicit similar patterns at different moments in time. Because for 

dynamic visual stimuli the stimulus identity should be defined as a temporal sequence of 

spatial patterns that translate into a temporal sequence of spatial activation patterns in the 

cortex, it is unfair to compare patterns that appear at different moments in time. This means 

that the specificity of a given pattern (or the average model rate vector) for a given stimulus 

will be negatively affected if the same pattern appears in a different context (location in the 

trial) for another stimulus. Consider the following example: two distinct movies with natural 

scenes are presented to the cat. For the first movie, an edge with a given orientation passes 

neuronal RFs at moment 300 ms. For the second movie, a similar edge passes the RFs at 

moment 1,300 ms. The specificity of the pattern that is evoked by this edge will be small 
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because the pattern appears equally for both stimulus conditions. However, taking into 

account that these are dynamic stimuli, a better way to describe the stimulus is to say that the 

edge crosses the RFs at a specific moment in time. For this reason, averaging over the entire 

trial (mean rate) or computing pattern specificity cannot provide a good account of the 

dynamic coding process that takes place. The temporal component (stimulus locking) needs 

to be also considered. 

The specificity and mean rate classifiers will provide a good classification performance 

only if the response to each stimulus in the set is independent (the patterns for a given 

stimulus are not shared with other stimuli), or there is a statistical difference in the average 

drive that neurons receive for different stimuli from a particular set. When these conditions 

cannot be achieved (which is usually the case for dynamic stimuli) both classifiers perform 

rather poorly (Figure 3F). To solve these problems we introduced the trajectory classifier. 

The trajectory classifier. During training, a model trajectory is computed for a stimulus, 

as a sequence of average patterns appearing at successive moments in time (see main text Eq. 

13). During testing, a trajectory corresponding to a trial (sequence of patterns) is compared 

point-by-point to all model trajectories (see main text Eq. 14). The stimulus corresponding to 

the closest trajectory is assigned to the test trial (see main text Eq. 15). This classifier is 

intuitively better than the other two because it is general enough to describe the cortical 

response to both dynamic and static stimuli. It considers that a temporal succession of spatial 

input patterns is reflected in a temporal succession of multi-neuronal activation patterns. 



 8

Importantly, the size of the window in which patterns are averaged (in order to compute a 

given point of the trajectory) was always taken equal to the timescale of the patterns, τ (see 

main text Materials and Methods). Therefore, when a given timescale was chosen, the 

classification performance of this classifier reflected the precision with which patterns that 

evolve on timescale τ were locked to the stimulus in a window of the same size τ. 

Relation between classifiers. By manipulating the timescale (integration time constant) of 

patterns and observing the behavior of the different classifiers one has the possibility to 

investigate how the coding of a stimulus comes about. Note that the mean rate classifier is 

obviously not influenced by the timescale as it is not relying on patterns but on spike-counts. 

It rather represents an upper limit timescale (equal to the length of the trial), and as a 

consequence the other two classifiers’ performance approaches that of the mean rate as the 

timescale increases towards the trial length (Figure 3D-F). Because the mean rate only reflects 

if, on average, there is a stimulus specific bias in the spike-count vectors, we will next discuss 

only the relation between the specificity and trajectory classifiers for different timescales. 

Case 1: High performance of the specificity classifier but low performance of the trajectory 

classifier for fast timescales (1-5 ms; Figure 3D, Figure S3). In this case, the high performance 

of the specificity classifier indicates that fast patterns are stimulus specific. However, the low 

performance of the trajectory classifier shows that these stimulus specific patterns are not 

locked to the stimulus with a precision comparable to the timescale (τ). Such fast patterns 

might arise from chance synchronization of neurons, with a precision of τ, induced by slower 
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rate modulations. Since in Figure 3D the trajectory classifier eventually catches up with the 

specificity classifier for larger time constants (> 20 ms), it can be concluded that slower coding 

processes predominate and locking occurs with a precision broader than 20 ms. 

Case 2: The pattern trajectory has a high performance for both small and large timescales. 

This means that there are both fast patterns, precisely stimulus-locked, and slow patterns, 

stimulus-locked on a slower timescale (Figure 3E). 

Case  3: Low performance of specificity classifier but a high peak performance of the 

trajectory classifier. This is an indication that the stimulus evokes dynamical responses over 

the trial and that different stimuli might elicit similar patterns at different moments in time. 

The timescale at which the pattern trajectory attains its peak performance represents the 

average timescale on which informative patterns evolve and the precision of their locking to 

the stimulus (Figure 3F, Figure S4). 

Consistency of Classification Results 

To check the consistency of classification results, we tested whether results could be 

reproduced in two additional animals. Datasets were available only for drifting sinusoidal 

gratings and for flashed letter sequences. For drifting sinusoidal gratings, we first considered 

two additional datasets (col05-e06: Figure S3A, col05-e08b: Figure S3B) recorded from the 

same cat (col05) as the one from Figure 3D. The first dataset (Figure S3A) provided similar 

results as in Figure 3D. The second dataset (col05-e08b) corresponded to the same session as 

the one from Figure 3D (col05-e08a) but it was spike-sorted with different criteria. After the 
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spike-sorting clustering procedure separated units into many groups of waveforms, our 

spike-sorter allowed for a flexible choice of manually merging waveform groups to form 

units. In this second dataset, we decided to apply less merging and thus to include more 

single-units (a more aggressive separation into single-units). Results shown in Figure S3B 

reveal improvement in classification performance for all classifiers when more units were 

included, as compared to Figure 3D. In Figure S3C and S3D results are depicted for two 

additional cats (col07 and col08). The relation between classifiers remained the same for small 

timescales (larger performance for specificity classifier than for trajectory classifier) and 

consistent with the conclusions in the main text. Furthermore, qualitatively the performance 

curves look remarkably similar regardless of the number of electrodes used or the particular 

animal that was included in the analysis. Also, spike-sorting does not seem to influence the 

relation between different classifiers across the spectrum of timescales that were investigated.  

Results corresponding to the dataset with flashed letter sequences (Figure 3F) were also 

reproduced in two additional cats (cer01 and col13; Figure S4). In all cases, the largest 

performance was attained by the trajectory classifier and for small timescales of 5 or 10 ms. 

 

3. Supporting Discussions 

Coping with Multidimensional Neuronal Patterns 

We have applied Kohonen clustering in addition to low-pass filtering spikes with 

exponentially decaying kernels. Mapping and clustering have been frequently used as 
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important tools in characterizing other multidimensional systems [5-8]. However, to the best 

of our knowledge, these methods have not been exploited before to their full potential in 

exploring neuronal coding. 

The clustering we used could have a two-fold effect, both with a negative and beneficial 

impact. Because activity vectors that occur consistently will find a robust representation in the 

clusters (model vectors), some very rarely appearing ones could be missed. However, the 

same logic renders clustering efficient in emphasizing only effects that are really salient, i.e. 

patterns that occur robustly. In addition, since we minimized the approximation error for 

clustering, model vectors in the map resemble very closely the actual appearing patterns and 

one can always trace back, for a given pattern, the spike constellation that evoked it at any 

given moment in time (e.g., see Figure 2B). Thus, clustering enables an automated and precise 

discovery of robustly occurring classes of spiking patterns. 

Methodological Considerations 

In the process of computing patterns we have employed two procedures: low-pass 

filtering and Kohonen clustering. While the first one could claim a direct biological 

correspondence (synaptic integration), the biological relevance of the second is less obvious. 

Clustering can in fact be understood in a biological context since it involves only averaging 

and competition. Patterns can be preferentially learned through Hebbian rules by the 

synapses of competing neurons, and such models are described frequently to account for self-

organized learning [9-13]. Using a representative model vector for a given activity vector can 
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be linked to a clustering of the input space: When new stimuli are presented, neurons with 

the closest synaptic structure to input patterns will be activated preferentially, in a manner 

similar to our labeling of activity vectors by model vectors. 

The classifiers we have introduced here are simple and involve only few assumptions, 

computing just averages and Euclidean distances. In the brain, average activation patterns 

could be computed by activity-dependent synaptic potentiation and depression [14]. 

Computing distances is somewhat equivalent to competition and selection, where, for 

example, only the neuron with the closest synaptic pattern will be activated [11] or it will be 

activated earlier [9, 12], subsequently inhibiting competing representations. Due to their 

simplicity, classifiers described here allow for direct and meaningful conclusions about the 

biological importance of the extracted features: mean firing rates, pattern specificity, or 

trajectories in the multidimensional space. 

Slow and Fast Timescales 

For the case of stimuli with slow dynamics (e.g. low spatial frequency gratings), because 

of the predominantly limited integration window of neurons (< 30 ms), correlated activity on 

the slow timescales (> 100 ms) must somehow be reflected on the fast timescale as well in 

order to be detected. This process can be implemented either through chance synchronization 

of neurons on faster timescales (10-20 ms), as neurons stochastically discharge with a 

probability modulated by the slow process, or through more coordinated firing that is 

internally regulated by the network [15]. We found that, for drifting gratings, specific patterns 
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on fast timescales (1-20 ms) appear in a fashion modulated by the slow drifting grating and 

allow for excellent discrimination of stimuli (Figure 3D and Figure S3, green). These patterns 

were stimulus locked with a precision > 20 ms. Thus, slow processes can be represented by 

patterns evolving on faster timescales that are consistent with the biological time constants of 

neurons and synapses. For the case of stimuli with faster dynamics, neurons have a tendency 

to fire more precisely [16] and faster patterns, more precisely locked to the stimulus, may be 

involved in coding (Figure 3F). In such cases coding may be biased towards more 

synchronous discharges on timescales of 5-10 ms. 

Correlations induced by fast dynamic stimuli may be represented naturally on the fast 

timescales compatible with the time constants of neuronal membranes and AMPA 

neurotransmission. They arise because of the reliable spiking of neurons when these are 

depolarized by currents with fast dynamics [16]. On the other hand, correlations induced by 

slower stimuli need to be converted to correlations on the fast timescale in order to be 

effective in driving post-synaptic neurons [17-19]. Because in response to slow inputs neurons 

tend to fire more randomly [16], faster correlations may naturally be induced by chance, from 

slower firing probability modulations. In addition, other processes, such as coordination of 

neuronal assemblies or fast oscillations may also be involved in recoding the slow 

correlations of the stimulus into faster correlations efficient for driving other post-synaptic 

neurons [15]. In any case, the characteristic timescale of neuronal membranes and synaptic 

currents seems to play a crucial role in how the timescale of the stimulus is coded into 
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neuronal firing patterns because the performance of both pattern classifiers (specificity and 

trajectory) peaked already at timescales around 10-20 ms. 
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