The American Journal of Human Genetics, Volume 88

Supplemental Data

Identification and Characterization

of an Inborn Error of Metabolism

Caused by Dihydrofolate Reductase Deficiency

Siddharth Banka, Henk J. Blom, John Walter, Majid Aziz, Jill Urquhart, Christopher M. Clouthier, Gillian I. Rice, Arjan P.M. de Brouwer, Emma Hilton, Grace Vassallo, Andrew Will, Desirée E.C. Smith, Yvo M. Smulders, Ron A. Wevers, Robert Steinfeld, Simon Heales, Yanick J. Crow, Joelle N. Pelletier, Simon Jones, and William G. Newman

Table S1. Summary of Known Disorders Related to Folate Transport and Metabolism

Disorder	Gene	OMIM	Important clinical features	Ref
Hereditary folate malabsorption	PCFT	611672	Low blood and CSF folate levels in infancy with anaemia, diarrhoea, immune deficiency, infections and neurological deficits.	1
Cerebral folate	FOLR1	136430	Low CSF folate levels causing neurodegeneration characterized by developmental	2
Methylene-	MTHFR	607093	Variable age of onset (infancy to adulthood) and severity. Common features are	3
tetrahydrofolate			developmental delay, motor and gait abnormalities, seizures, psychiatric manifestations,	
reductase deficiency			hyperhomocystinemia, low or normal methionine and absence of megaloblastic anaemia.	
Methionine synthase	MTR	156570	Developmental delay, megaloblastic anaemia with homocystinuria and without	4
deficiency (CblG)			methylmalonic aciduria	
Methionine synthase	MTRR	602568	Developmental delay, megaloblastic anaemia with homocystinuria and without	5
reductase deficiency			methylmalonic aciduria	
(CblE)				
Glutamate	FTCD	606806	Severe form with developmental delay, seizures, elevated folate levels and presence of	6
forminotransferase			FIGLU in urine following administration of histidine. A mild form has also been reported.	
deficiency				

Table S2. Results of Proband's Investigations that Were Found to Be Normal

Hemoglobinopathy screen
Transferrin isoelectric focusing
Sialic acid content
Mucopolysaccharides
Very long chain fatty acids
Cholesterol and 7-dehydrocholesterol levels
Plasma glucose and lactate
Activities of respiratory chain enzyme complexes I, II, III and IV in skeletal muscle
Analysis of common POLG1 mutations
Urine organic acids
Urine, plasma and CSF amino acids
Plasma ammonia
Urine urate, hypoxanthine, xanthine, pseudouridine, uracil, thymine and succinyl
adenosine levels
Immunoglobulin levels and sub-classes
FOLR1 and FOLR2 sequencing

Table S3. Regions of Homozygosity Unique to the Proband

The genomic regions of homozygosity unique to the proband that were identified by autozygosity are shown below. Nucleotide numbers in the table are based on NCBI build 36. The 3Mb region at chromosome 5q14.1 flanked by rs4521453 and rs10059759, containing the *DHFR* gene is highlighted in bold. Importantly, the loci containing potential candidate genes, *TCN2*, *PCFT*, *MTHFR*, *MTR*, *MTRR*, *FOLR1* and *FTCD* were not homozygous in the proband.

Chromosome	Nucleotide	Cytoband Start	Nucleotide	Cytoband End	Size (kbp)
1	238.424.796	q43	246.877.270	a44	8.452
1	171,630,183	q25.1	173,286,248	q25.1	1,656
2	114,881,944	q14.1	129,097,050	q14.3	14,215
2	169,755,268	q31.1	180,484,267	q34	10,729
2	206,487,607	q31.1	211,614,325	q34	5,127
2	23,481,816	p24.1	26,747,938	p23.3	3,266
2	232,175,438	q37.1	235,340,542	q37.3	3,165
3	190,926,256	q28	197,922,334	q29	6,996
3	117,992,882	q13.31	121,010,467	q13.33	3,017
3	72,248,225	p13	74,138,367	p13	1,890
3	95,025,696	q11.2	96,552,879	q11.2	1,527
5	151,883,873	q33.1	169,885,305	q35.1	18,001
5	77,664,850	q13.2	81,292,374	q14.1	3,628
5	26,401,350	p15.2	29,885,156	p13.3	3,484
7	118,286,776	q31.31	120,492,215	q31.31	2,205
7	156,716,799	q36.3	158,623,513	q36.3	1,906
8	121,887,852	q22.3	128,382,683	q24.21	6,495
8	105,849,484	q22.3	106,838,246	q24.21	989
9	36,587	p24.3	10,457,284	p23	10,420
10	2,175,839	p15.3	11,457,616	p14	9,281
11	27,843,969	p14.1	34,309,803	p13	6,465
11	121,538,364	q23.2	122,758,013	q24.1	1,220
12	45,834,102	q13.11	52,587,311	q15	6,753
14	67,404,339	q24.1	75,840,910	q24.3	8,436
16	26,038,708	p12.1	31,567,929	p11.2	5,529
16	45,092,478	q11.2	49,564,860	q21	4,472
17	62,176,152	q24.2	65,719,223	q24.3	3,543
18	3,587,003	p11.31	10,303,579	p11.21	6,717
19	3,049,245	p13.3	6,673,045	p13.3	3,623
22	25,300,902	q12.1	41,427,458	q13.31	16,127
				Total size	179.332

Exon	Primer	Product length
1	Forward – TTCGCGCCAAACTTGACCG	292
	Reverse – AAAAGGGGAATCCAGTCGG	
2	Forward – CGACTGGATTCCCCTTTTC	476
	Reverse – ATAATTTGCTCGTGCGTTG	
3	Forward – AGCATGCAGACTCCACACAG	373
	Reverse – GCAGCTTCATCAATAGCTCCTT	
4	Forward – GGTCAGAGGCCATACTGATG	434
	Reverse – CAGTACAGATAATGTGCTGCTTC	
5	Forward – GGCAGCACCAAGCATATTTT	351
	Reverse – GCACCCATCATCCTAGCAGT	
6	Forward – CCAACTTGACAGTGGCTTACC	394
	Reverse – GCAAGAATGTCTCATAAATGGTATC	

Table S4. Primer Sequences for Amplification of DHFR

Note: Annealing temperature of 55°C was used for all the primer pairs. The same primers were used for bidirectional sequencing.

Table 55. Primers for QPCR of DHFR, GUSB and PPIB

Gene	Gene ID	Primer sequence	
DHFR	NM_000791.3	Forward – GTTCCTGGGAGCACCTTTTC	
		Reverse – ATGCAGACAGTGCCAGCTC	
GUSB	NM_000181.1	Forward -AGAGTGGTGCTGAGGATTGG	
		Reverse – CCCTCATGCTCTAGCGTGTC	
PPIB	NM_000942.4	Forward -CGGAAAGACTGTTCCAAAAAC	
		Reverse - GATTACACGATGGAATTTGCTG	

Figure S1. Proband's Peripheral Blood Films

1A Proband's peripheral blood film at diagnosis with modified Wright's stain at 500x magnification showing a hypersegmented neutrophil (marked by arrow) with macrocytic red cells, red cell fragments, marked poikilocytosis and anisocytosis.

1B. Proband's peripheral blood film after treatment.

Figure S2. ClustalW Alignment of DHFR Protein Sequence from Human, Mouse, Chicken, Zebra-fish and Drosophila

Nucleotide phosphate binding sites are highlighted in green. Leucine (L) at position 80, the residue disrupted by mutations in our patients is highlighted in red demonstrating its conservation at least to *Drosophila*.

P00374 HUMAN	MVGSLNCIVAVSQNM <mark>gigkngd</mark> lpwpplrnefryfqrmtttssvegkqnlvimg <mark>kkt</mark> w 58	
P00375 MOUSE	mvrplncivavsqnm <mark>gigkngd</mark> lpwpplrnefkyfqrmtttssvegkqnlvimg <mark>rkt</mark> w 58	
P00378 CHICKEN	-vrslnsivavcqnm <mark>gigkdgn</mark> lpwpplrneykyfqrmtstshvegkqnavimg <mark>kkt</mark> w 57	
Q6IQS4 ZEBRAFISH	MSRILNCIVAVCPDM <mark>gigkngn</mark> lpwhpirlsnelkhfqkmtmtpsdegkknvvimg <mark>rkt</mark> w 60	
P17719 DROSOPHILA	MLR-FNLIVAVCENF <mark>GIGIRGD</mark> LPWRIKSELKYFSRTTKRTSDPTKQNAVVMG <mark>RKT</mark> Y 56	
	:* ****. ::*** *:*** * ::*.: * . *:* *:*	
P00374 HUMAN	FSIPEKNRPLKGRINLVL <mark>SREI</mark> KEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIV 116	ĺ
P00375 MOUSE	FSIPEKNRPLKDRINIVL <mark>SREI</mark> KEPPRGAHFLAKSLDDALRLIEQPELASKVDMVWIV 116	i
P00378 CHICKEN	FSIPEKNRPLKDRINIVL <mark>SREI</mark> KEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIV 115	l
Q6IQS4 ZEBRAFISH	FSIPAAHRPLKNRINIVL <mark>SREI</mark> KTAPEGAHYLASDFSSALHLLDSGELEKLVDQVWII 118	į.
P17719 DROSOPHILA	FGVPESKRPLPDRLNIVL <mark>STTL</mark> QESDLPKG-VLLCPNLETAMKILEEQNEVENIWIV 112	i
	.: :*** .*:*:*** *: . *.* *:. *: : : *: :**:	
P00374 HUMAN	<mark>GGSSVYKE</mark> AMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGI 176	į
P00375 MOUSE	<mark>GGSSVYQE</mark> AMNQPGHLRLFVTRIMQEFESDTFFPEIDLGKYKLLPEYPGVLSEVQEEKGI 176	ł
P00378 CHICKEN	GGTAVYKAAMEKPINHRLFVTRILHEFESDTFFPEIDYKDFKLLTEYPGVPADIQEEDGI 175	
Q6IQS4 ZEBRAFISH	GGSSLYKEVMERSGHRRLFVTRILKQFDCDTFIPNFDMDKYKLLPEFPGVPVGLQEDNGV 178	
P17719 DROSOPHILA	GGSGVYEEAMAS PRCHRLYITKIMQKFDCDTFF PAIP-DSFREVA PDSDM PLGVQEENGI 171	
	:.:*: .* . :*::*:*:*:.*:*:*: .::: :: ::.*:	
P00374 HUMAN	KYKFEVYEKND 187	
P00375 MOUSE	KYKFEVYEKKD 187	
P00378 CHICKEN	QYKFEVYQKSVLAQ 189	
Q6IQS4 ZEBRAFISH	QYLFEVYESIKH 190	
P17719 DROSOPHILA	KFEYKILEKHS 182	
	11 111 I.	

Figure S3. Summarised Representation of the Consequences of Loss of Activity

of DHFR

Supplemental References

- Qiu A., Jansen M., Sakaris A., Min S.H., Chattopadhyay S., Tsai E., Sandoval C., Zhao R., Akabas M.H., Goldman I.D. (2006) Identification of an Intestinal Folate Transporter and the Molecular Basis for Hereditary Folate Malabsorption. Cell. *127*, 917-928.
- Steinfeld R., Grapp M., Kraetzner R., Dreha-Kulaczewski S., Helms G., Dechent ., Wevers R., Grosso S., Gärtner J. (2009) Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism. Am. J. Hum. Genet. 85, 354-363.
- Goyette P., Sumner J.S., Milos R., Duncan A.M.V., Rosenblatt D.S., Matthews R.G., Rozen R. (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat. Genet. 7, 195-200.
- Gulati S., Baker P., Li Y.N., Fowler B., Kruger W., Brody L.C., Banerjee R. (1996) Defects in human methionine synthase in cblG patients. Hum. Mol. Genet. 5,1859-1865.
- 5. Leclerc D., Wilson A., Dumas R., Gafuik C., Song D., Watkins D., Heng H.H.Q., Rommens J.M., Scherer S.W., Rosenblatt D.S., Gravel R.A. (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc. Natl. Acad. Sci. U. S. A. 95, 3059-3064.
- 6. Hilton J.F., Christensen K.E., Watkins D., Raby B.A., Renaud Y., de la Luna S., Estivill X., MacKenzie R.E., Hudson T.J., Rosenblatt D.S. (2003) The molecular basis of glutamate formiminotransferase deficiency. Hum. Mut. 22, 67-73.