

The American Journal of Human Genetics, Volume 88

Supplemental Data

A Fast, Powerful Method for Detecting Identity by Descent

Brian L. Browning and Sharon R. Browning

Pseudocode for fastIBD algorithm

Notation and Conventions
We assume the phased haplotype data has N samples (S[1:N]), L markers (M[1:L]), K sampled haplotype

pairs per individual, and 2NK sampled haplotypes (H[1: 2NK]). The sample corresponding to a haplotype

ℎ ∊ H is denoted sample(ℎ). If and are two elements of S, M, or H, then < means that the index of

is less than the index of . We assume markers are indexed in chromosomal order and that samples and

haplotypes have consistent ordering so that for ℎ, ∊ H, ℎ ≤ if and only if sample(ℎ) ≤ sample(). All

iterations over collections are in increasing order. For haplotypes ℎ, ∊ H, and markers , ∊ M with < ,

ℎ(,)== (,) means that ℎ and have identical model states when restricted to the marker window

starting at marker (inclusive) and ending at marker (exclusive).

B[1:R] is a subsequence of distinct markers with B[1]==M[1], B[R]==M[L], and having approximately

equal genetic distance between all adjacent markers in the subsequence.

Map is an associative map whose keys are ordered pairs of samples (,) satisfying < , and whose values

are sorted Lists of shared haplotype tracts for the sample pair, sorted in order of starting marker index.

Shared haplotype tracts are defined in the Methods section of the main text.

Threshold is the threshold for printing shared haplotype tracts. Tracts with score less than the threshold are

printed.

For simplicity, the pseudocode presents the basic fastIBD algorithm. There are two additional optimizations

that BEAGLE employs to decrease computation time:

1. A hash map is used to eliminate the iteration over all pairs of haplotypes in the ADD-TRACTS

algorithm. This optimization is nicely described in Gusev et al. (Genome Res 2009;19(2):318-26).

2. Iteration over all pairs of samples in EXTEND-OR-REMOVE-TRACTS is replaced with iteration

over the keys of Map which are mapped to a non-empty sorted tract list.

fastIBD Pseudocode

Algorithm: fastIBD

ADD-TRACTS(Map, B[1], B[2])

FOR (j=2, 3, …, R-1) DO

 ADD-TRACTS(Map, B[j], B[j+1])

 EXTEND-OR-REMOVE-TRACTS(Map, B[j], Threshold)

EXTEND-OR-REMOVE-TRACTS(Map, B[R], Threshold)

Algorithm: ADD-TRACTS(Map, Start, End)

FOR h ∊ H DO

 For g ∊ H WITH sample(g) > sample(h) DO

 IF (h(Start, End) == g(Start, End)) THEN

 a = min {m ∊ M : h(m, Start)== g(m, Start)}

 b = max {m ∊ M : Score(h, g, a, m) ≤ 1} //Score() is defined in Methods

 c = arg maxa≤m≤b {Score(h, g, a, m)}

 x = Score(h, g, a, c)

 Tract = NEW Tract(H1=h, H2=g, start=a, end=c, score=x)

 SortedTractList = Map.get(sample(h), sample(g))

 SortedTractList.add(Tract)

Algorithm: EXTEND-OR-REMOVE-TRACTS(Map, Boundary, Threshold)

FOR s ∊ S DO

 FOR t ∊ S WITH t > s DO

 SortedTractList = Map.get(s, t)

 EXTEND-TO-BOUNDARY(SortedTractList, Boundary)

 MERGE-TO-BOUNDARY(SortedTractList, Boundary)

 FOR Tract ∊ SortedTractList WITH Tract.End < Boundary DO

 SortedTractList.remove(Tract) // Tract could not be extended

 IF (Tract.score < threshold) THEN

 PRINT Tract

Algorithm: EXTEND-TO-BOUNDARY(SortedTractList, Boundary)

IF (SortedTractList.size()==0) THEN

 RETURN

MERGE-COVERED-TRACTS(SortedTractList)

// Next, recover Map Key (ordered sample pair) mapped to SortedTractList

Sample1 = sample(SortedTractList[1].H1)

Sample2 = sample(SortedTractList[1].H2)

Gap = FIRST-GAP(SortedTractList)

WHILE (Gap < Boundary) DO

 PreviousGap = Gap

 Extension = NULL

 MaxExtensionScore = -1.0

 FOR h ∊ H WITH sample(h)==Sample1 DO

 FOR g ∊ H WITH sample(g)==Sample2 DO

 b = max {m ∊ M : m ≥ Gap AND h(Gap, m)==g(Gap, m)}

 x = Score(h, g, Gap, b) // Score() is defined in Methods

 IF (b > Gap AND x > MaxExtensionScore) THEN

 MaxExtensionScore = x

 Extension = NEW Tract(H1=h, H2=g, start=Gap, end=b, score=x)

 IF (EXTENSION ≠ NULL) THEN

 SortedTractList.add(Extension)

 Gap = FIRST-GAP(SortedTractList)

 If (Gap == PreviousGap) THEN

 Gap = Boundary

Algorithm: FIRST-GAP(SortedTractList)

IF (SortedTractList.size()==0) THEN

 Return M[L]

End = SortedTractList[1].end

For Tract ∊ SortedTractList DO

 IF (Tract.Start ≤ End) THEN

 IF (Tract.End > End) THEN

 End = Tract.End

RETURN End

Algorithm: MERGE-TO-BOUNDARY(SortedTractList, Boundary)

MERGE-COVERED-TRACTS(SortedTractList)

TractA = NULL

IF (SortedTractList.size() ≥ 2) THEN

 TractA = SortedTractList[1]

WHILE (TractA ≠ NULL AND TractA.end < Boundary) DO

 startingSize = SortedTractList.size()

 TractB = NULL

 FOR T ∊ SortedTractList WITH (T ≠ TractA AND T.Start ≤ TractA.end) DO

 Score1 = Score(T.H1, T.H2, TractA.End, T.end)

 Score2 = TractA.Score/Score(TractA.H1, TractA.H2, T.Start, TractA.end)

 LeftScore = TractA.score ⨯ MIN {1, (100 ⨯ Score1)}

 RightScore = MIN {1, (100 ⨯ Score2)} ⨯ T.score

 X = MIN {LeftScore, RightScore}

 IF (TractB == NULL OR X < TractB.score) THEN

 TractB = NEW Tract(H1=T.H1, H2=T.H2, start=TractA.start,end=T.end,score=X)

 TractA = NULL

 IF (TractB ≠ NULL) THEN

 SortedList.add(TractB)

 MERGE-COVERED-TRACTS(SortedTractList)

 IF (SortedTractList.size() ≥ 2) THEN

 TractA = SortedTractList[1]

Algorithm: MERGE-COVERED-TRACTS(SortedTractList)

FOR Tract1 ∊ SortedTractList DO

 FOR Tract2 ∊ SortedTractList WITH Tract2 ≠ Tract1 DO

 IF (Tract1.start ≤ Tract2.start) THEN

 IF (Tract2.end ≤ Tract1.end)) THEN

 IF (Tract2.score < Tract1.score) THEN

 Tract1.score = Tract2.score

 SortedTractList.remove(Tract2)

