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Supplementary Figure 1. Annotated isoforms in human and mouse genomes. Number of
UCSC annotated mRNAs per gene, showing the large number of multi-isoform genes, even by
conservative estimates that do not take into account RNA-Seq data.
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Supplementary Figure 2. Estimates of Ψ using single-end reads. The three Ψ estimates and
the reads used in each estimate. NI , NE correspond to the number of reads supporting the
inclusive isoform, respectively, while NC corresponds to the number of reads supporting both
isoforms (constitutive reads). The Ψ̂SJ estimate shown corresponds to the estimate used in the
majority of the analyses in1, and Ψ̂A3SS was also used in the same study for a subset of exons with
an alternative splice site (see Supplementary Note for a proof of unbiasedness of these estimates.)
The Ψ̂MISO estimate shown corresponds to the analytic estimate from the MISO model (full
derivation described in Supplementary Note), which is only obtained for single-end data.
Estimates incorporate increasing amounts of information present in reads, with Ψ̂A3SS using the
least amount of information and Ψ̂MISO using the most.
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Supplementary Figure 3. Steps of MISO statistical inference procedure from. Reads are
aligned to the genome and a set of junctions that are either precomputed or discovered de novo
using transcript annotation/discovery tools. Aligned reads are then mapped to isoforms, shown
here for the case of a skipped exon, and represented as binary matrices that correspond to their
compatibility with isoforms. Each each row i in the isoform compatibility matrix corresponds to a
read, and each column j to an isoform, where the ijth entry is 1 if read i is consistent with isoform
j and 0 otherwise. In this example, read R1 is consistent only with the inclusive isoform
(containing the white exon), R2 consistent only with the exclusive isoform (excluding the white
exon), while RN consistent with both. Inference is performed by computing a probability
distribution (the posterior) over Ψ given the reads. Bayes’ rule states that this distribution is
proportional to the product of our expectation about the value of Ψ (the prior, here taken to be
uniformly distributed over [0, 1]) and the likelihood of observing the reads given Ψ (the
likelihood). By summing over all possible assignments of reads to isoforms, weighting each
assignment by its probability, the posterior distribution over Ψ is obtained. Inferences are then
summarized by the mean of the posterior distribution, used as an estimate of Ψ, and confidence
intervals that quantitate the confidence in the estimate (as described in Online Methods.)
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Supplementary Figure 4. Evidence for exon size-dependent qRT-PCR bias. Posterior
marginals for each of the 52 alternative splicing events used in the breast cancer tissue sample4.
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Supplementary Figure 5. MISO Ψ estimation for 52 alternative exons in breast cancer
tissue. Posterior distributions for each of the 52 alternative splicing events used in the breast
cancer tissue sample4.
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Supplementary Figure 6. mRNA-Seq data for hnRNPAB in breast cancer tissue. Data from
breast cancer tissue (sample BRC426) from4 and normal breast tissue (provided by Illumina,
available on request).
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Supplementary Figure 7. Comparison of MISO ∆Ψ and qRT-PCR ∆Ψ values for hnRNP H
dataset. Change in Ψ value based on MISO (x-axis) and qRT-PCR estimates (y-axis) for a set of
25 alternative exons in the hnRNP H control and knockdown data set are shown (ρ = 0.77).
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Supplementary Figure 8. Comparison of read coverage fluctuations and gene expression for
technical replicate libraries with short and long insert lengths. (a) The insert length
distribution of pairs of libraries made from the same batch of RNA with mean fragment lengths of
∼98 nt and ∼277 nt. These are shown in both control (black) and CUGBP1 knockdown
conditions. (b) Fold change between the short and long technical replicate libraries in control
(top, black) and knockdown (bottom, blue) conditions. (c) Read coverage varies across exons, as
illustrated on selected exons on Eef2. Deviation of sequence coverage from the mean can be
computed for each gene. These values can be correlated between libraries, and the cumulative
distribution function of correlation values can be plotted. (d) Changes in gene expression are
preserved between libraries of differing insert lengths. (e) The coefficient of variation in read
coverage across genes does not markedly differ between libraries of differing insert lengths.
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Supplementary Figure 9. Graphical model representation of MISO for single-end reads. A
graphical representation of the probabilistic dependencies between variables in MISO, for a
single gene with K isoforms. Shaded nodes represent observed variables, which include all the
reads for the gene of interest, the parameters of the mRNA-Seq experiment and alignment
procedure (the read length and the overhang length constraint) and features of the gene of interest
(lengths of isoforms and the number of mappable positions in each isoform). The unshaded nodes
represent random variables whose value are to be inferred from data, namely the Ψ value of each
isoform k (Ψk) and the isoform from which each read was generated (In). The vector ~α
corresponds to the parameters of the Dirichlet prior distribution on isoform abundances, which is
fixed to encode a uniform prior. MISO models the joint inference problem of finding the best set
of Ψ values for the isoforms and the correct assignment of reads to the isoforms from which they
were generated. For paired-end data, the probability of assigning a read to an isoform also
depends on the parameters µ, σ of the insert length distribution, and are incorporated into the
model as described in main text (for simplicity, these are not shown in the graphical model.)
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Supplementary Figure 10. Random walk sampling scheme for inference in MISO. A
five-step random walk sampled from a Logistic-Normal proposal distribution in log space of the
parameters of a Dirichlet distribution (left). Each step in this random walk parameterizes a
Dirichlet distribution, from which corresponding points on the simplex can be drawn (right). The
use of the Logistic-Normal proposal distribution allows efficient exploration of the space of ~Ψ
values.
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Input: Set of reads R , set of isoforms G  of a gene, number of iterations  
to run M  

Output: Set S  of sampled 
 

 values 
 
Initialize 

 

t = 0  randomly 
 
Initialize assignments of reads to isoforms consistently 
 
Set S = {}  
 
foreach Iteration m = 1,..., M  do 

Propose 
 

new  from a distribution centered around 
 

t  

Compute the probability  of accepting 
 

new  (using Metropolis-Hastings ratio) 
With probability , set 

 

t +1 = new , otherwise set 
 

t +1 = t   
 
foreach Read r R  do 
 

foreach Isoform g G  do 
Compute probability pr ,g  of reassigning read r  to isoform g  

end 
 

Sample reassignment of read r  to an isoform g G based on 
computed probabilities 

 end 
  
 Set S = S { t +1}  
end 
 
return S  

 

Supplementary Figure 11. Sampling-based MISO inference algorithm. Algorithm for
estimating the posterior distribution over ~Ψ by Markov chain Monte Carlo sampling is shown.
The algorithm begins with a random initialization of isoform distributions and assignments of
reads to isoforms, and then repeatedly proposes new isoform distributions. These proposals are
probabilistically accepted or rejected. If rejected, the previous isoform distribution is used in the
next step. Each read is then probabilistically reassigned to one of the gene’s isoforms, based on
the new isoform distribution. As the algorithm converges, it is expected that an isoform
distribution and associated assignment of reads to isoforms will be sampled in proportion to their
probability under the model.
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Supplementary Figure 12. Isoform abundance estimation for four isoforms of GRIN1 gene.
(a) A combination of alternative 3′ splice sites and exon skipping produces four isoforms in the
region encoding the C-terminus of GRIN15, 6. (b) MISO Ψ estimates for reads simulated from an
underlying isoform distribution where splicing of exons 21/C1 and 22/C2 is correlated, causing
the two exons to be frequently included together (simulated isoform abundances shown at left).
The posterior marginal distribution, estimated using the Monte Carlo algorithm described in
Online Methods, is shown for each isoform, with the correct value shown as a vertical red line. (c)
Estimation of isoform abundance for the case where reads were simulated from an GRIN1
isoform distribution where splicing of exons 21/C1 and 22/C2 is anti-correlated, so the exons are
rarely included together. The Ψ values for 21/C1 and 22/C2 are equal (0.5) in both conditions, but
in the correlated condition the conditional probability of including 21/C2 given that 22/C2 is
included is 0.8, while in the anti-correlated condition it is 0.2.
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Supplementary Tables 
 

Supplementary Table 1. Short read datasets used in study 
 
 
Source No. mapped reads Run type 
Human heart (Illumina, HiSeq 2000) 156 M PE, 2x50nt 
Human heart (Illumina, GA2) 30 M PE, 2x54nt 
Human testes (Illumina, GA2) 17 M PE, 2x54nt 
Human breast cancer tissue13 11 M PE, 2x36nt 
HEK 293T cells, control14 16 M SE, 36nt 
HEK 293T cells, hnRNP H knockdown14 21 M SE, 36nt 
HEK 293T cells, hnRNP H CLIP-Seq 
(this work) 

4 M SE, 36nt 
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Supplementary Table 2. Events used in qRT-PCR validation of MISO on breast 
cancer data set 
 
 

Gene   Chromosome   Strand   ASE coords  
ASE 
size  

PCR 
Psi  

 Adj. 
PCR 
Psi  

 MISO 
Psi   PsiSJ   

MAP3K7  
6  -   91311072-

91310992  
81 0.43 0.62 0.49 0.43 

ZDHHC16  
10  +   99203546-

99203593  
48 0.69 0.79 0.64 0.62 

KIF23  
15  +   67520161-

67520472  
312 0.03 0.23 0.23 0.18 

SS18  
18  -   21869885-

21869793  
93 0.3 0.49 0.34 0.4 

MANBAL  
20  +   35360580-

35360696  
117 0.39 0.57 0.55 0.54 

ZNF207  
17  +   27712600-

27712647  
48 0.77 0.87 0.8 0.78 

DHX34  
19  +   52571970-

52572044  
75 0.35 0.45 0.48 0.47 

ITGB4BP  
20  -   33332046-

33331871  
176 0.82 0.99 0.86 0.91 

OS9  
12  +   56400149-

56400313  
165 0.39 0.58 0.69 0.73 

CTBP1  
4  -   1225307-

1225113  
195 0.8 0.99 0.88 0.87 

IL17RC  
3  +   9937609-

9937653  
45 0.17 0.27 0.26 0.22 

ALAS1  
3  +   52207728-

52207904  
177 0.08 0.27 0.24 0.18 

HNRPA2B1  
7  -   26204011-

26203976  
36 0.16 0.26 0.17 0.48 

FBXO44  
1  +  11641177-

11641272  
96 0.34 0.51 0.55 0.49 

SIAHBP1  
8  -   144974874-

144974824  
51 0.7 0.78 0.54 0.58 

NUMB  
14  -   72815885-

72815742  
144 0.27 0.43 0.65 0.51 
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TPD52L1  
6  +   125619943-

125620003  
61 0.59 0.67 0.35 0.33 

SNRP70  
19  +   54297183-

54297254  
72 0.05 0.14 0.28 0.46 

UBE2I  
16  +   1302349-

1302605  
257 0.01 0.18 0.2 0.31 

ARID5A  
2  +   96578785-

96578923  
139 0.52 0.69 0.66 0.6 

SSBP4  
19  +   18403163-

18403228  
66 0.12 0.21 0.42 0.44 

FLJ22222  
17  -   77945708-

77945496  
213 0.35 0.52 0.47 0.38 

VKORC1  
16  -   31012243-

31012134  
110 0.76 0.93 0.94 0.88 

CAMK2G  
10  -   75249409-

75249296  
114 0.25 0.43 0.45 0.47 

MAPT  
17  +   41423081-

41423278  
198 0.02 0.18 0.24 0.23 

PPP2R5C  
14  +   101453921-

101454037  
117 0.21 0.38 0.38 0.32 

PTPRS  
19  -   5167778-

5167731  
48 0.19 0.26 0.29 0.26 

SMARCC2  
12  -   54853080-

54852988  
93 0.11 0.28 0.29 0.32 

PTPRC  
1  +   196938139-

196938282  
144 0.1 0.27 0.32 0.28 

FXR1  
3  +   182175795-

182175886  
92 0.18 0.36 0.53 0.35 

MBD1  
18  -   46053839-

46053702  
138 0.66 0.84 0.76 0.81 

HNRPAB  
5  +   177569739-

177569879  
141 0.34 0.51 0.88 0.86 

CTTN  
11  +   69945224-

69945334  
111 0.8 0.98 0.82 0.87 

KIAA0101  
15  -   62456157-

62455995  
163 0.79 0.96 0.9 0.73 

CD46  
1  +   206030221-

206030313  
93 0.03 0.21 0.22 0.12 

TSC2  
16  +   2067600-

2067728  
129 0.22 0.4 0.43 0.57 

AKR1A1  
1  +   45790695-

45790822  
128 0.15 0.33 0.4 0.26 
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HPS1  
10  -   100179636-

100179538  
99 0.41 0.59 0.58 0.62 

MYO18A  
17  -   24436792-

24436748  
45 0.05 0.12 0.25 0.15 

LLGL2  
17  +   71082129-

71082171  
43 0.41 0.5 0.59 0.55 

GTF2I  
7  +   73771134-

73771196  
63 0.29 0.38 0.35 0.22 

HNRPD  
4  -   83496860-

83496714  
147 0.16 0.35 0.3 0.24 

ITGB4  
17  +   71262731-

71262889  
159 0.09 0.28 0.24 0.28 

ADD3  
10  +   111882053-

111882148  
96 0.51 0.7 0.74 0.59 

HNRPD  
4  -   83511761-

83511705  
57 0.77 0.85 0.77 0.83 

MT  
22  -   41863248-

41863031  
218 0.38 0.57 0.76 0.53 

PRRX1  
1  +   168966042-

168966113  
72 0.54 0.62 0.61 0.51 

LGALS8  
1  +   234772838-

234772963  
126 0.04 0.23 0.32 0.22 

RBM39  
20  -   33791933-

33791861  
73 0.12 0.21 0.61 0.71 

ARHGAP17  
16  -   24858419-

24858186  
234 0.14 0.33 0.46 0.41 

NFYA  
6  +   41156528-

41156614  
87 0.08 0.26 0.16 0.09 

FBLN2  
3  +   13638276-

13638416  
141 0.22 0.41 0.31 0.4 

GANAB  
11  -   62158423-

62158358  
66 0.14 0.22 0.23 0.43 
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Supplementary Note: Details of statistical estimators and MISO
inference algorithm

Estimates of Ψ. Multiple approaches for estimating Ψ values have been proposed. One simple
estimate, Ψ̂A3SS, considers the splicing event as a choice between the competing 3′ splice sites
(3′ss) of the alternative exon and the downstream constitutive exon, estimating the inclusion of
the exon by the relative numbers of reads that join these 3′ss to the upstream constitutive exon
(Supplementary Fig. 2). This estimate was previously used for a subset of alternative splicing
events.1

A more comprehensive estimate is Ψ̂SJ, which estimates exon inclusion based on the com-
bined read density in the body of the alternative exon and in the two junctions that involve the
alternative exon, relative to the density of junction reads that join the upstream and downstream
constitutive exons1 (Figure 1c). The remaining reads that align to the bodies of the flanking con-
stitutive exons could have derived from either isoform and are not used in Ψ̂SJ.

More formally, Ψ̂SJ = DI

DI+DE
, whereDI is the density of inclusion reads andDE the density

of exclusion reads. Let el be the length of the alternatively spliced exon, rl be the length of mRNA-
seq reads, and ol the overhang constraint placed on splice junctions. Assuming all positions in the
gene of interest are uniquely mappable, DI and DE are computed as follows:

DI =
NI

el − rl + 1 + 2(rl + 1− 2ol)
, DE =

NE

rl + 1− 2ol

where NI and NE are the number of reads supporting inclusion and exclusion reads, respectively.
If non-uniquely mappable read starting positions exist, these are simply subtracted from the de-
nominators of DI and DE .

Computing the maximum a posteriori estimate Ψ̂MISO for single-end reads. As explained in
the main text, constitutive reads contain latent information about Ψ, and can be used to improve
and stabilize Ψ estimates (Figure 1d). For exon-centric analyses, an analytic estimate can be
computed, if only single-end reads are used and certain assumptions are made about the prior
distribution P (Ψ). This estimate is denoted Ψ̂MISO and can be derived by computing the maximum
a posteriori (MAP) estimate of Ψ under the MISO model. (Note that in a subset of figures in
the main text, Ψ̂MISO is used alternatively to denote the mean of the posterior distribution over Ψ

obtained by MCMC-based inference, as indicated by the figure legends.)

Since the prior P (Ψ) is 1 when the hyperparameters α = β = 1, the MAP estimate and
the MLE estimates are equal, and so we proceed by finding the MLE. Given R1:N reads and their
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isoform assignments I1:N , the likelihood function P (R1:N | Ψ) is:

P (R1:N | Ψ) =
N∏

n=1

2∑
In=1

P (Rn | In)P (In | Ψ)

=
N∏

n=1

[
P (Rn | In = 1)Ψf + P (Rn | In = 2)(1−Ψf )

]
where 1 ≤ n ≤ N . We’d like to find a value of Ψ̂ that maximizes this likelihood, which is written
as a function of Ψf . By the equivariance property of maximum likelihood, we can simply find the
MLE Ψ̂f of Ψf and transform it into Ψ̂, since the two are one-to-one, using:

Ψ̂ =
c1Ψ̂f

c1 − c1Ψ̂f + c2Ψ̂f

(1)

To simplify the notation, let p1 and p2 stand for the probabilities of a read being generated from
the first and second isoforms, respectively, assuming read lengths rl:

p1 =
1

m(rl, I1)
, p2 =

1

m(rl, I2)

Substituting our observation model into the likelihood gives:

P (R1:N | Ψf ) =
N∏

n=1

(P (Rn | 1,Θ)Ψf + P (Rn | 2,Θ)(1−Ψf ))

=
N∏

n=1

[
p1R

1
nΨf + p2R

2
n(1−Ψf )

]
Taking the log, we have:

Ψ̂f = arg max
Ψf

N∑
n=1

log
(
p1R

1
nΨf + p2R

2
n(1−Ψf )

)
Differentiating and setting the derivative to zero yields:

d

dΨf

N∑
n=1

log
(
p1R

1
nΨf + p2R

2
n(1−Ψf )

)
= 0

N∑
n=1

p1R
1
n − p2R

2
n

p1R1
nΨf + p2R2

n(1−Ψf )
= 0
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This sum can be rewritten in terms of three sufficient statistics: the number of reads supporting
only isoform 1 (NI), the number of reads supporting only isoform 2 (NE), and the number of reads
supporting both isoforms (NC), to get:

NI

Ψf

− NE

1−Ψf

+
NC(p1 − p2)

p1Ψf + p2(1−Ψf )
= 0

This equation reduces to solving a quadratic equation, whose relevant solution is:

Ψ̂f =
A−
√
B + C

D
, where:

A = NIp1 +NCp1 − 2NIp2 −NEp2 −NCp2

B = 4NIp2(NIp1 +NEp1 +NCp1 −NIp2 −NEp2 −NCp2)

C = (−NIp1 −NCp1 + 2NIp2 +NEp2 +NCp2)2

D = 2(NIp1 +NEp1 +NCp1 −NIp2 −NEp2 −NCp2)

Now, Ψ̂f can be plugged in to Equation 1 to obtain Ψ̂, which is our MAP/MLE estimate.
This resulting estimate is simply a function of the read counts NI , NE, NC and the probabilities p1

and p2.

Proof that Ψ̂A3SS is unbiased. As an example of analytic estimates of Ψ, we show that the simplest
estimate, Ψ̂A3SS, is unbiased. Recall that Ψ̂A3SS uses only the reads from one inclusion junction
and from the exclusion junction (Supplementary Fig. 2). Given a read length rl and an overhang
constraint of ol, let J be the number of possible read starting positions in a junction:

J = rl + 1− 2ol

Then Ψ̂A3SS can be defined as follows:

Ψ̂A3SS =
NI

J
NI

J
+ NE

J

=
NI

NI +NE

Proposition 1 (Unbiasedness of Ψ̂A3SS) The symmetric splice junction estimator Ψ̂A3SS is unbi-
ased, i.e. E(Ψ̂A3SS) = Ψ for all Ψ.
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Proof Fix Ψ. Let l1 be the length of the inclusive isoform, and l2 be the length of the exclusive
isoform. Then the number of reads possible from the two isoforms are c1, c2, respectively:

c1 = l1 − rl + 1

c2 = l2 − rl + 1

These constants are used to compute Ψf , the probability of sequencing a read from the inclusive
isoform, which is defined as follows:

Ψf =
c1Ψ

c1Ψ + c2(1−Ψ)

Recall that J = rl + 1 − 2ol. In general, a read generated in our model falls into one of four
mutually categories. It could support: (1) the inclusive isoform, (2) the exclusive isoform, (3) both
isoforms, or (4) be thrown out due to an overhang violation. Relative to this space of outcomes,
the expected probabilities of inclusion and exclusion reads are as follows:

P (NI) = P (inclusive isoform)P (inclusion junction read | inclusive isoform)

= Ψf
J

c1

P (NE) = P (exclusive isoform)P (exclusion junction read | exclusive isoform)

= (1−Ψf )
J

c2

To show unbiasedness, it suffices to show that E( NI

NI+NE
) = Ψ. Since Ψ̂A3SS uses only the NI and

NE reads, we know that NI + NE = n, where n is the total number of reads used in the estimate.
Therefore,

E

(
NI

NI +NE

)
= E

(
NI

n

)
=

1

n
E(NI)

The expected number of inclusion reads in a sample of n reads, E(NI), is simply n×P (NI). Since
reads other than inclusion or exclusion reads are discarded in the Ψ̂A3SS estimate, the probability of
an inclusion read must be normalized to account for the fact that these are the only two outcomes:

E(NI) = n× P (NI)

P (NI) + P (NE)

= n×
Ψf

J
c1

Ψf
J
c1

+ (1−Ψf ) J
c2
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Substituting Ψf with its definition results in:

E(NI) = n×

c1Ψ

c1Ψ + c2(1−Ψ)

J

c1

c1Ψ

c1Ψ + c2(1−Ψ)

J

c1

+

(
1− c1Ψ

c1Ψ + c2(1−Ψ)

)
J

c2

× c1Ψ + c2(1−Ψ)

c1Ψ + c2(1−Ψ)

= n× ΨJ

ΨJ + (c1Ψ + c2(1−Ψ)− c1Ψ) J
c2

= n× ΨJ

ΨJ + (1−Ψ)J

= n× Ψ

Ψ + (1−Ψ)

= n×Ψ

Thus, 1
n
E(NI) = Ψ, which demonstrates that Ψ̂A3SS is unbiased. A similar argument holds for the

Ψ̂SJ estimate used in1.

Efficient estimation of isoform distributions for genes with many isoforms. We devised a
Markov chain Monte Carlo (MCMC) inference scheme based on a novel proposal distribution.
Considering the length information and length correction in our problem leads to violations of
the mathematically convenient conjugacy properties of traditional Dirichlet-Multinomial mixture
models. For this reason, the use of a standard Gibbs sampler is not possible. Instead, we use
a hybrid MCMC sampler that combines the Metropolis-Hastings (MH) algorithm with a Gibbs
sampler2. In MH, a proposal distribution Q is used to estimate the target distribution P (~x), where
P can be evaluated up to proportionality on any set of states but cannot be easily sampled from.
Transitions to different states of P are repeatedly proposed from Q, and these are stochastically
accepted or rejected according to the MH ratio, α:

α = min

(
P (~xt+1)Q(~xt; ~xt+1)

P (~xt)Q(~xt+1; ~xt)
, 1

)
(MH ratio)

where α is the probability of transitioning to the proposed state ~xt+1 from the current state ~xt. The
better the proposal distribution Q is at proposing probable values under P , the faster the sampling
algorithm will converge to the correct distribution.

In our case, the target distribution is the posterior distribution on ~Ψ given a set of reads,
P (~Ψ | R1:N). In general, we expect any set of reads from a gene with many isoform to be well-
explained by only a small set of closely related isoform distributions. In other words, we expect
the model’s probability mass to be peaked on a small set of ~Ψ values that explain the data, with
little probability mass on other ~Ψ that encode a very different set of isoform abundances.
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In light of this unimodal probability landscape, a proposal distribution that uniformly pro-
poses random isoform distributions is unlikely to find values that fit the data. A standard strategy
for solving problems of this form using sampling is to use a proposal distribution that “drifts”—
or forms a random walk—over the sampled variable’s state space. In a random walk proposal,
the proposed value is typically the previously sampled value plus some noise (e.g. the previous
proposal, corrupted by normally distributed noise.)

A challenge in defining a random walk proposal in our case is that isoform distributions
are constrained to sum to one—i.e., they must be probability distributions. Therefore, a random
walk where a proposal is drawn from a normal distribution centered on the previously sampled
isoform distribution will not work. To overcome this, we formulated a random walk using the
Logistic-Normal distribution3, a distribution on the simplex that generalizes the more commonly
used Dirichlet distribution. With the Logistic-Normal it is possible to to formalize the idea that
the newly proposed isoform distribution is drawn from a distribution whose mean is the previ-
ously sampled distribution, meaning that only small changes to the current isoform distribution are
proposed, while still respecting the constraint that proposed values must sum to one. Intuitively,
this allows the algorithm to ‘hone in’ on the region of highly probable isoform distributions for a
given data set, and move around in that space, without spending too much time sampling lower
probability regions.

The random walk is defined over the parameters of the distribution from which ~Ψ is drawn,
in log space, allowing the sampled values to range unconstrained over the space of real numbers.
Each draw of a set of parameters then parameterizes a Dirichlet distribution from which an isoform
distribution is drawn. Supplementary Figure 10 shows proposals drawn according to this process,
illustrating how a five-step unconstrained random walk on the parameters of the distribution in log
space induces a random walk in the constrained space of the 2D simplex, where each point repre-
sents a probability vector. Our algorithm exploits the fact that a random walk over the parameters
of a distribution—which can be conveniently ‘drifted over’ unconstrained—can be used to define
a random walk over the values drawn from this distribution, which in this case are constrained to
lie within the simplex.

Our sampling algorithm, shown in Supplementary Figure 11, proceeds by repeatedly propos-
ing new values for ~Ψ, which are stochastically accepted in proportion to their probability under the
model. First, a new isoform distribution is proposed, which is probabilistically accepted or rejected
based on the MH ratio, as described above. For each proposed isoform distribution, the algorithm
then probabilistically reassigns each read to a new isoform, which completes one iteration of the
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algorithm. As the number of iterations increases, the algorithm is guaranteed to eventually sample
isoform distributions and assignments of reads to isoforms in proportion to their posterior proba-
bility in our model.

A distribution that can capture the desired random walk in simplex space is the Logistic-
Normal distribution, parameterized by a mean ~µ and covariance matrix Σ, and denoted Lk(~µ,Σ)

for the k-dimensional case3. A k-dimensional vector ~θ can be sampled from Lk−1(~µ,Σ) by first
sampling a vector v from a multivariate normal distribution Normal(~µ,Σ) and then taking its in-
verse logistic transform, logit−1:

~θ = logit−1(v) =
ev

1 +
∑K

k=1 e
vk

The vector v can be obtained back via the logit transform v = log(θ/θk+1), where θk+1 = 1 −∑K
k=1 θk. The probability density for ~θ with parameters ~µ,Σ is:

|2πΣ|−
1
2

(
k+1∏
j=1

θj

)−1

exp

[
−1

2
{log(θ/θk+1)− ~µ}TΣ−1{log(θ/θk+1)}

]
(2)

Given a fixed covariance matrix Σ for the proposal distribution, the sampling scheme is as follows:

1. Initialize ~µt, ~Ψt = ~µ0, ~Ψ0, and initialize I to a consistent assignment

2. For m = 1, . . . ,M iterations,

(a) Propose ~µt+1, ~Ψt+1:

~µt+1 ∼ Normal(~µt,Σ)

~Ψt+1 = logit−1(~µt+1)

(b) Let ~µt, ~Ψt = ~µt+1, ~Ψt+1 with probability α (otherwise, keep values from step t):

α = min

(
P (~Ψt+1, I1:N , R1:N)Q(~Ψt; ~Ψt+1)

P (~Ψt, I1:N , R1:N)Q(~Ψt+1; ~Ψt)
, 1

)
Here, Q is a Logistic-Normal (following the probability density given in Equation 2)
with mean equal to the previous time step’s ~Ψ, excluding its last element:

Q(~Ψt+1; ~Ψt) ∼ Lk−1(log([Ψ1
t , . . . ,Ψ

k−1
t ]),Σ)

And similarly for Q(~Ψt; ~Ψt+1). The joint distributions in the MH ratio factor into a
product of conditionals, as explained in Online Methods.
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(c) Gibbs step: for j = 1, . . . , N reads,

i. Compute the probability aj,k of reassigning read Rj to the kth isoform, for every
isoform 1 ≤ k ≤ K:

aj,k = P (Ij = k | R1:N , I1:N\{Ij}, ~Ψt+1)

ii. Sample reassignment of Ij ∼Multinomial(1, [aj,1 · · · aj,K ])

Note that Step (c) is the usual Gibbs sampling step for reassigning data points to components in
mixture models.

Cross-validation adjustment of qRT-PCR values. Given the apparent length bias in the qRT-
PCR estimates of Ψ in Figure 2, we computed an adjusted set of qRT-PCR Ψ values using cross-
validation, in order to estimate the overlap between these values and the Bayesian confidence
intervals of Ψ̂MISO. Exons were binned by length (n = 3 bins) and the events used for validation
were split in four sets. An adjusted qRT-PCR estimate of Ψ was then computed for each set by
adding the average ∆Ψ of MISO and qRT-PCR estimates in the remaining three sets, bounding the
resulting value in [0, 1]. The adjusted and raw Ψ estimates for MISO and qRT-PCR, along with the
Bayesian confidence intervals, are shown in Supplementary Figure 5.
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