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1 Details of molecular mean field model

We consider a planar mixed lipid bilayer of hydrophobic thickness L com-
posed of cholesterol, a lipid with two saturated hydrocarbon chains of 16
carbons, C16:0, such as dipalmitoylphosphatidylcholine (DPPC), and a lipid
with two mono-unsaturated hydrocarbon chains of 18 carbons, C18:1, such
as dioleoylphosphatidylcholine (DOPC). The chains are described by Flory’s
Rotational Isomeric States Model (1, 2) in which each dihedral angle is in one
of three configurations: the lowest energy trans, or gauche-plus or gauche-
minus, the latter two having an energy 500 cal/mol greater than that of the
trans configuration. For saturated carbons these states are thermally popu-
lated. The double bond of the unsaturated chains is treated as a permanent
gauche bond. We denote the total number of molecules N . There are Ni

molecules in the inner leaflet, of which a fraction, xc,i, are cholesterol, xs,i
saturated lipid, and xu,i unsaturated lipid. Mole fractions xc,o, xs,o, and xu,o
for the No molecules of the outer leaflet are similarly defined. We denote
the fraction of lipids in the inner leaflet as χ:

χ ≡ Ni

N
, 1− χ =

No

N
(1)

We now describe how the free energy of the bilayer is calculated within the
model. We denote the free energy per molecule, in units of kBT , by f̃ to
distinguish it from the areal free energy density f used in the text. They
are of course related by f = a−1f̃ where a ≡ A/N and A is the area of
the bilayer midplane. The free energy used in our model has the following
components:

f̃ = f̃ideal + f̃config + f̃bond + f̃Lagrange + f̃surface (2)
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The first of these terms is the free energy contribution of the entropy of
mixing, namely

f̃ideal =
∑

σ=c,s,u

[χxσ,i ln(χxσ,i) + (1− χ)xσ,o ln((1− χ)xσ,o)]

− ln a (3)

The second term in Eqn. (2) is due to the entropies and gauche bond energies
of the configurations taken on by the molecules:

f̃config = 2χxs,i
∑
α∈Ωs,i

Ps,i(α) [lnPs,i(α) + βεs,i(α)]

+ 2χxu,i
∑

α∈Ωu,i

Pu,i(α) [lnPu,i(α) + βεu,i(α)]

+ χxc,i
∑
α∈Ωc,i

Pc,i(α) [lnPc,i(α) + βεc,i(α)]

+ 2(1− χ)xs,o
∑

α∈Ωs,o

Ps,o(α) [lnPs,o(α) + βεs,o(α)]

+ 2(1− χ)xu,o
∑

α∈Ωu,o

Pu,o(α) [lnPu,o(α) + βεu,o(α)]

+ (1− χ)xc,o
∑

α∈Ωc,o

Pc,o(α) [lnPc,o(α) + βεc,o(α)] (4)

Here Ωs,i is the set of molecular configurations of single saturated lipid
chains in the inner leaflet, with analogous definitions for other components.
A large number (of order hundreds of millions) of these configurations is
generated on the basis of the Rotational Isomeric States Model, including
gauche/trans isomerization, overall rotations of the molecules, and steric
hindrances within a given chain configuration. The factors of 2 multiplying
the terms corresponding to saturated and unsaturated lipids are due to the
two chains present in each of these molecules.

The third term f̃bond of Eqn. (2) contains attractive interactions between
molecules which depend on the average local orientation of carbon-carbon
bonds. These interactions are responsible for the liquid-gel and liquid-liquid
phase transitions occurring in the model.

f̃bond = −
∑
j

∑
k

βJj,k
Nj,tailsNk,tails

2aN2vs

∫ L

0
〈ξj(z)〉〈ξk(z)〉dz, (5)
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where the indices j and k specify both the type of molecule and the leaflet.
The numbers of tails are defined in the obvious way; for example, Ns,i,tails =
2χxs,iN whereas Nc,o,tails = (1 − χ)xc,oN . The quantity vs is the volume
assigned to a CH2 group, equal to 27 Å3. The interaction strengths Jj,k take
on different values depending on whether the molecules indexed by j and k
are lipids or cholesterol. We have used values determined in previous work
(3) by qualitatively matching experimental phase diagrams. These values
are Jll = 1.9 cal/mol, Jlc = 0.85 Jll, and Jcc = 0.80 Jll. The integral in
Eqn. (5) runs across the hydrophobic thickness of the bilayer. The quanti-
ties 〈ξj(z)〉 are local order parameters which measure the extent to which
carbon-carbon bonds located at a depth z in the bilayer are aligned with
the bilayer normal. These order parameters are ensemble averages of micro-
scopic quantities defined for each molecular configuration α; for example,
for saturated lipids in the inner leaflet the microscopically defined quantity
is

ξs,i(α; z) ≡ vs

n−1∑
k=2

δ(z − zk,α)g(ûk,α · ẑ), where (6)

g(x) ≡ 2m+ 1
2

(cos2 x)m (7)

The number of carbon atoms in the saturated lipid chain is given by n = 16.
For a configuration α of a saturated lipid chain, zk,α is the coordinate of
the kth carbon atom in the direction normal to the bilayer, while ûk,α is
the unit vector pointing from carbon k − 1 to carbon k + 1. The function
g determines the average shape of lipid molecules; as in previous work (4)
we use m = 18 in order to match the correct area per molecule in a pure
saturated lipid bilayer. Similar definitions as Eqn. (6) apply for unsaturated
lipid chains, and for the short flexible hydrocarbon portion of the cholesterol
molecule. Cholesterol’s rigid ring structure is assigned a single directional
vector, pointing along its length and contributing to the directional order
parameter.

We arrive now at the term f̃Lagrange in Eqn. (2), which accounts for the
dense, liquid-like molecular packing in the hydrophobic interior of the bi-
layer. This constraint is enforced using a local Lagrange multiplier βπ(z):

f̃Lagrange ≡
∫
βπ(z){2χxs,i〈vs,i(z)〉+ 2(1− χ)xs,o〈vs,o(z)〉

+2χxu,i〈vu,i(z)〉+ 2(1− χ)xu,o〈vs,o(z)〉
+χ(1− xs,i)〈vc,i(z)〉+ (1− χ)xc,o〈vc,o(z)〉

−a}dz (8)
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The volume 〈vs,i(z)〉 is the average volume contributed by saturated lipid
chain configurations at a depth z within the bilayer. It is the ensemble
average of the following microscopic quantity:

vs,i(α; z) ≡ vs
n−1∑
k=1

δ(z − zk,α) + vCH3 · δ(z − zn,α), (9)

where the volume vCH3 = 54 Å3 of the terminal CH3 group has been taken
into account. Similar definitions apply for unsaturated lipids and cholesterol,
taking into account their structure; each half of the −CH=CH− segment of
an unsaturated bond is given a volume vCH = 0.8vs while each of the 27
carbon atoms of cholesterol is assigned a volume vc = 21 Å3.

The final term, f̃surface, of the free energy of Eqn. (2) takes into account
in an implicit fashion the interactions between lipid head groups as well as
the interactions between lipid molecules and the solvent. Intuitively, if the
area per molecule becomes too large, this must be penalized due to contact
between the solvent and the hydrophobic interior of the membrane. This
penalty is incorporated into the free energy via the effective surface tension
Γ:

f̃surface = 2βΓa (10)

We use Γ = 0.12 kBT/Å2, roughly the surface tension of an oil-water inter-
face.

We have now defined each of the terms of Eqn. (2) in such a way that the
free energy f̃ is specified as a function of the composition of the bilayer (the
inner leaflet fraction χ and the mole fractions xσ,j), the area per molecule
a, and the probabilities Pσ,j(α) of the chain configurations. The latter are
chosen so as to minimize the free energy; the resulting Boltzmann distri-
bution may be easily derived by taking derivatives of Eqn. (2) with respect
to Pσ,j(α) for a given configuration α. Thus the free energy f̃ is defined
in terms of the bilayer composition and area per molecule, except for the
problem of choosing the Lagrange multiplier function βπ(z) so as to make
the contribution fLagrange vanish. This is in fact the main difficulty in calcu-
lating the free energy. It is solved by discretizing the thickness of the bilayer
into a finite number of slabs of thickness ∆z (we have used ∆z = 1 Å) and
defining discretized versions of the average volumes such as 〈vs,i(z)〉 so that
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the incompressibility condition can be written in a discrete form:

2χxs,i〈vs,i(k)〉+ 2(1− χ)xs,o〈vs,o(k)〉
+2χxu,i〈vu,i(k)〉+ 2(1− χ)xu,o〈vs,o(k)〉

+χxc,i〈vc,i(k)〉+ (1− χ)xc,o〈vc,o(k)〉
= a∆z, (11)

where j ∈ 1, 2 . . . , lz ≡ L/∆z

The quantity 〈vs,i(k)〉, for example, is the average volume contributed by
saturated lipids in the inner leaflet to the slab with index k. We note that
the area per molecule a and the hydrophobic thickness L of the bilayer are
not independent, but are related by the assumption of incompressibility:

La = [χxs,i + (1− χ)xs,o] vsat

+ [χxu,i + (1− χ)xu,o] vunsat

+ [χxc,i + (1− χ)xc,o] vchol, (12)

where vsat,vunsat,and vchol are the total volumes of the hydrophobic portions
of saturated lipids, unsaturated lipids, and cholesterol.

To summarize, the free energy is calculated as follows. Eqn. (11) gives
a number lz of coupled nonlinear equations which are solved by standard
methods. These equations involve quantities such as 〈vs,i(k)〉 which are cal-
culated from ensemble averages over a large set of chain configurations, as
described above. The discretized Lagrange multipliers βπ(k) appear as the
unknowns via the Boltzmann probability distribution. Once these multipli-
ers are known, the free energy may be calculated from Eqn. (2).

We note that the spatial discretization of the z direction normal to the
bilayer means that we only calculate free energies for bilayer thicknesses
which are multiples of ∆z. Since a and L are related by Eqn. (12), this
means that we only calculate free energies explicitly for a discrete set of
areal densities. Free energies at intermediate values are calculated by means
of third-order spline interpolation. In particular, the area per molecule
a at which the membrane is tensionless is found in this way. We have
verified that different means of interpolation (for example, global polynomial
interpolation) do not affect our results.

2 Probability distribution of mismatch area

Equation (19) of the paper gives the average mismatch area per unit pro-
jected interface length. We may further ask for the complete probability
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distribution P (a) of mismatch areas, that is, the probability that the mis-
match area A [y1, y2] of a configuration of the interfaces takes on the given
value a. This can be done by writing P (a) in terms of path integrals over all
trajectories of y1(x) and y2(x), the curves delineating the phase boundaries
in the two leaflets:

P (a) =
∫
Dy1Dy2δ(A[y1, y2]− a) exp(−βHfluct[y1, y2])∫

Dy1Dy2 exp(−βHfluct[y1, y2])
, (13)

where Hfluct is given in Eq. (8) of the paper. The delta function can be
written

δ(A− a) =
1

2π

∫ ∞
−∞

exp[−iβλ̃(A− a)]dβλ̃, (14)

so that

P (a) =
1

2π

∫∞
−∞ dβλ̃ exp(iβλ̃a)

∫
Dy1Dy2 exp(−iβλ̃A[y1, y2]) exp(−βHfluct[y1, y2])∫
Dy1Dy2 exp(−βHfluct[y1, y2])

=
1

2π

∫ ∞
−∞

dβλ̃ exp(iβλ̃a)
Z(τ0, λ+ iλ̃, T, L)
Z(τ0, λ, T, L)

=
1

2πZ(τ0, λ, T, L)

∫ ∞
−∞

dβλ̃ exp(iβλ̃a) exp[−βF (τ0, λ+ iλ̃, T, L)]

=
1

2πZ(τ0, λ, T, L)

∫ ∞
−∞

dβλ̃ exp(iβλ̃a) ·

exp

−βL [3π
8

]2/3
[

(kBT )2(λ+ iλ̃)2

τ0

]1/3
 , (15)

where the partition function, Z, and free energy F , are those encountered
earlier in Eq. (9) of the paper. Because the exponent is dimensionless, one
sees that there is a characteristic value, λc, of λ:

λc =
8

3π

(
kBTτ0

L3

)1/2

. (16)

It is also convenient to define an area ac ≡ kBT/λc. The integral can
be made dimensionless by defining the dimensionless interleaflet coupling
parameters g ≡ λ/λc and g̃ ≡ λ̃/λc.

P (a) =
βλc
2π

exp(g2/3)
∫ ∞
−∞

dg̃ exp
[
ig̃(a/ac)− (g + ig̃)2/3

]
(17)
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In the limit of large g, the distribution is the Gaussian

P (a) ≈ 3βλcg2/3

2π1/2
exp

[
−9

4
g4/3

(
a

ac
− 2

3g1/3

)2
]
, (18)

from which we may again recover the average mismatch area of Eqn. (20)
of the paper. We can likewise determine the tail of the probability distri-
bution of mismatch areas in the limit where a is large using a saddle point
approximation, with the result that

P (a) ∝ exp
[
− a

ac
(λc +

4
27

(
ac
a

)3)
]
. (19)

Thus when the mismatch area a is sufficiently large, the tail of the probabil-
ity distribution takes the form P (a) ∝ exp(−βλa) assumed by Risselada and
Marrink (5) in their estimate of the magnitude of the interleaflet coupling.

In general the integral in Eqn. (17) must be calculated numerically. In
Fig. 1 we show a plot of the probability distribution of the scaled area, a/ac,
given by

P̃ (a/ac) ≡ acP (a) (20)

for various values of the scaled interleaflet coupling parameter g. We note
that there is a small interval of areas near the origin in which the distribution
is extremely small. This is undoubtedly an entropic effect as there are few
configurations with very small mismatch areas.

3 Details of lattice Monte Carlo simulation

The lattice model we have considered is simply two coupled square-lattice
Ising models, also known as an Ising bilayer (6). The values of the spins in
each square lattice are σi and σ′i, where i = 1 . . . N2. The spins take the
values 1 (“ordered”) and −1 (“disordered”) representing two components in
a phase-separating binary mixture. The Hamiltonian is

βH
[
{σi}, {σ′i}

]
= −J

∑
〈i,j〉

[
σiσj + σ′iσ

′
j

]
−K

∑
i

σiσ
′
i, (21)

where the first sum is taken over pairs of neighboring spins and corresponds
to interactions within each leaflet of a bilayer, taking into account periodic
boundary conditions. The second term is a coupling between the two square
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Figure 1: Probability distribution of scaled mismatch area, a/ac, calculated
numerically with the following values of the scaled interleaflet coupling pa-
rameter g ≡ λ/λc: 1 (solid), 10 (dotted), and 50 (dashed).
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lattices and corresponds to the interleaflet coupling in a phase-separating
bilayer. In our simulations we used N = 50, J = 0.75, and K = 0.25.

We performed Monte Carlo simulations of the model described above.
Attempted Monte Carlo moves consisted of switching the values of two
neighboring spins within the same leaflet. The location and leaflet of the
spins were chosen at random. Because the Monte Carlo moves consist of
switching the values of spins, the total “magnetization” within each leaflet
is conserved. This corresponds to the conserved average composition of a
lipid bilayer. We always used an initial condition where half of the lattice
(in both leaflets) was filled with “up” spins and the other half with “down”
spins. A single Monte Carlo time step was defined to be 2N2 attempted
moves.

The mismatch area of a configuration is defined as the total number of
spins in all the mismatch regions. A mismatch region is defined to be a
connected region containing three or more spins in which the spins in the
two leaflets have different values. Two spins are considered connected if they
neighbor each other vertically or horizontally, but not diagonally. There are
two types of mismatch regions, shown as two shades of gray in Fig. 6 of
the paper; either the inner leaflet is ordered and the outer disordered, or
vice versa. Neighboring mismatch regions of these two types are considered
distinct. Our definition of a mismatch region requires that the region include
at least three spins. The purpose of this requirement is to exclude small
clusters of “ordered” spins in the bulk of the “disordered” phase, or vice
versa, since these clusters are not mismatch regions at the interface between
the phases. Changing or removing this criterion should not influence the
statistics of large mismatch areas. The perimeter of a mismatch region is
defined to be the number of spins in that region which border on spins
outside it. The total perimeter of the mismatch area is the sum of the
perimeters of the mismatch regions.

Figure 7 of the paper was generated as follows. Series of configura-
tions were taken from eight simulations of the model, each consisting of
one million MC steps. The first hundred thousand steps of each simulation
were ignored to allow equilibration, as measured by the average mismatch
area. Among the remaining configurations, every hundredth configuration
was selected in order to obtain configurations which were nearly statistically
independent. This produced 8 × 9000 configurations. These configurations
were binned according to their mismatch areas with bin widths of 10 (areas
are dimensionless since they are numbers of spins). This produces the his-
togram shown as a solid line in Fig. 7 of the paper. Among configurations
belonging to a given bin, the average perimeter was calculated and divided
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by the average mismatch area to obtain the quantity plotted as a dashed
line in the figure.
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