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Supplement 1. Estimation of the degree of non-uniformity of the 
erythrocyte distribution in the perfusion chamber 

1.1. Deformation-induced off-wall lateral migration 
To evaluate the adequacy of the approximation of uniform erythrocyte distribution under 
experimental conditions (1-3), we used a simple mathematical model of particle transport in a 
shear flow, taking into consideration the balance between their shear-induced diffusional and 
deformation-induced off-wall lateral migration. A similar approach has been successfully applied 
in earlier studies to describe the non-uniform droplet distribution in diluted and concentrated 
emulsions in the Couette flow (4,5). Here, it is used to simulate lateral migration of erythrocytes 
in the in-flow region of the perfusion chamber denoted by light rectangles in Fig. S1, Panel A. 

The equation for the balance of erythrocyte volume fraction Ф(x, y) had the form 

 
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The erythrocyte dispersion coefficient DRBC was given as the first term of Eq. 4. The velocity of  
erythrocyte migration from the wall was assumed to be equal to(6,7) 
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where a=2.9 µm is the equivalent radius of a human erythrocyte (radius of the sphere of the same 

volume), h – distance to the nearest wall, 
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directed away from the nearest wall. The value of constant kF=0.01 was determined in(6)using 
Eq. S2 for the description of the lateral redistribution of washed human erythrocytes during the 
passage of their suspension through the constriction in a microfluidic device. To simultaneously 
account for the opposing walls, the migration velocity V  was written in the form that additively 
accounts for them(4,5): 
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Here, hbottom and htop are the distances to the lower (i.e., on the right of the flow direction) and the 
upper (i.e., on the left of the flow direction) walls, respectively. Because at shear rates above ~50 
s-1 the viscosity of blood and RBC suspension shows only weak dependence on the shear 
rate(8)and the near-wall erythrocyte distribution was of primary interest, the velocity field was 
found by solving the Navier-Stokes equations with constant viscosity(9): 
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Here, ρ and μ are mean density and viscosity of blood, p – pressure, I – unit tensor. The local 
shear rate was determined as(9) 
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where subscripts x and y denote the respective spatial derivatives. 
Equations S1 and S4 were made dimensionless as follows: Hxx /' , Hyy /' , wtt ' , 

0/' uuu  , 0/' uvv  , 0/' ppp  , w  /' , Haa /' , Hhh bottombottom /'  , Hhh toptop /'  , 

where wHu 0 , wp  0 , H=600 µm. After that, they assumed the form (hereafter, the primes 

are omitted): 
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where 

 2Re Hw  is the Reynolds number. The form of expressions for m and  did not 

change after they were made dimensionless (Eqs. S3 and S5). The coordinates were normalized 
to H, the dimensionless width of the channel in the region farthest from the inlet was 2, the 
entrance width was 5, and the total length of the computational region was 10.8 (see the bottom 
part of the Panel B in Fig. S1). In order to have the dimensionless wall shear rate equal to 1, the 
entrance velocity profile was parabolic with the maximum 0.5×2/5=0.2. The inflow erythrocyte 
distribution was assumed to be uniform and correspond to ФRBC,0=0.4. To avoid a singularity in 
the calculation of m, the distances hbottom and htop  in Eq. S3 were increased by a small value, a/4; 
this addition is much smaller than the erythrocyte diameter and therefore does not significantly 
affect the result. 

Equations S6 and S7 were solved in the steady-state case. At first, the velocity field was 
found by solving the Eq. S7, and then the distribution of the erythrocyte volume fraction was 
found by solving the Equation S6. Panel B in Fig. S1 shows the distribution of velocities 
(arrows) and erythrocyte volume fraction (surface) at the characteristic wall shear rate in the 
experiments being simulated ( w =800 s-1). In general, erythrocytes are distributed uniformly 

even though the layer near both walls is somewhat depleted. The depletion is established rapidly 
at the entrance of both the wide and the narrow zones and does not vary further downstream (a 
small bend near the outflow boundary x=5 is a numerical artifact). Panel C shows the distribution 
of the erythrocyte volume fraction across the flow at x = 3 (equivalent to 1800 µm from the wall 
curve). Evidently, the erythrocyte-depleted region is roughly 10 µm thick, i.e., comparable with 
the main diameter of a human erythrocyte. The mean value of ФRBC over a section of 0…8 µm is 
around 0.34, which is 15% lower than ФRBC,0. Therefore, the non-uniform distribution of 
erythrocytes resulting from their deformation-induced off-wall migration can be neglected under 
these conditions. 

1.2. Shear diffusion-induced lateral migration  
Another mechanism for formation of the non-uniform particle distribution across the flow is 
lateral migration resulting from particle-particle collisions (see reviews in(10-12)). It is a 
consequence of collision irreversibility and does not depend on particle interactions with the 
fluid and the wall. The transition length along the chamber necessary to form a non-uniform 
distribution of erythrocytes by this mechanism was estimated using the formula from(10): 
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Taking DRBC as the first term of Equation 4 and substituting dRBC/2 with a yields 
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Thus, the calculated Lss for human or rabbit RBSs at 40% hematocrit equals ~5·107 µm = 50 m, 
which is substantially greater not only than the inflow chamber length but also than its whole 
length. Thus, the lateral migration resulting from this mechanism was nonessential in the 
experiments being considered. 
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Figure S1. Erythrocyte distribution in the perfusion chamber. (A) A general view of the chamber 
from(13): schematic (top) and photograph (bottom). The arrows indicate the blood flow 
direction. The photograph shows arterial segments exposed to the blood. The region of 
subsequent calculation of erythrocyte distribution is marked by light rectangles. (B) The 
calculated steady-state velocity field (arrows) and the erythrocyte volume fraction distribution 
(surface) over the inflow chamber region at w =800 s-1 (corresponding to Re=64 because the 

mean kinematic viscosity of blood is sm /105.4/ 26   ). The narrow layer near both walls 
is depleted of erythrocytes. The cross-section at x=3, i.e., 1800 µm from the wall curve, is shown 
as a black segment. (С) The distribution of the erythrocyte volume fraction within the cross 
section at x=3, 0≤y≤2. The inset shows the detailed view of the segment near y=0, indicating that 
the thickness of the depleted zone is roughly equal to the main erythrocyte diameter. 
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Supplement 2. Platelet flux to the wall  
The expression for platelet flux to the wall (the number of platelet-wall collisions per unit area 
per unit time) was derived using the assumption that the only platelets to interact with the wall 
are those that were expelled toward it from the narrow near-wall layer as a result of inelastic 
rebounding collision with another blood cell (either erythrocyte or another platelet) that travels 
slightly further from the wall and therefore with a higher velocity (Fig. 1A). The flux J was 
determined by the product of collision frequency of a single platelet, v, platelet two-dimensional 
concentration in the near-wall layer, S (platelets/µm2), and hydrodynamic collision efficiency, εh. 
Neglecting hydrodynamic interactions between the particles as well as between the particles and 
the wall, Smoluchowski’s theory gives the following expression for the collision frequency of 
two spheres of volume V1 and V2 approaching each other by rectilinear paths in a simple shear 
flow(14-16): 
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where   is the local shear rate. After expressing the sphere volume through its radius, 
substituting it by the major radius of an erythrocyte, dRBC/2 or platelet, dP/2, corrected with 
factors k1 and k2, it became  
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The introduction of factors k1 and k2 was required due to the non-spherical shape of blood cells 
and presence of the wall, which may influence their interactions in a shear flow(17). This 
influence is insufficiently investigated, thus k1- and k2-values should be determined from the 
comparison of theoretical predictions with experimental data (see Fig. 4A).  

The frequency of collisions of a single platelet with erythrocytes near the wall was 
estimated as 
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where w  is the wall shear rate, nRBC and ΦRBC are the erythrocyte concentration and volume 

fraction, respectively, VRBC is the volume of an erythrocyte, and 
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erythrocytes between the wall and the platelet flowing close to it. By analogy, the frequency of 
collisions of a single platelet with other platelets was 
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where    
P
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
 , and Vp is the platelet volume. For simplicity, the “shape 

factors“ k1 and k2 were assumed to be identical in Eqs. S12 and S13.  
 The lateral displacement of particles resulting from one inelastic rebounding collision in a 
viscous media is of the order of particle’s dimension (10,18). Thus, the thickness of the layer 
from which a platelet can be expelled by an erythrocyte or another platelet toward the wall in the 
result of one collision was roughly estimated as dRBC and dP, respectively. Platelet two-
dimensional concentration in these layers is S1=P×dRBC and S2=P×dP.  



 S6

Actual collision frequenсy of particles in an unbounded shear flow is lower then one 
predicted by Smoluchowski’s theory (Eq. S10) due to their hydrodynamic interaction. The 
measure of this inequality calls the hydrodynamic collision efficiency. Earlier studies have 
demonstrated that hydrodynamic collision efficiency for spheres(19)and platelets and their 
aggregates(14), which were assumed to be spherical, depends on both the shear rate and the 
size ratio of colliding particles λ. For 0.3≤λ≤1, this dependency was expressed in the form(14) 
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Assuming that Eq. S14 is applicable for platelet-erythrocyte (
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and platelet-platelet ( 12  ,  wh  ,12  ) collisions near the wall, platelet fluxes to the wall 

generated by these collisions were calculated as the following expressions: 
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The total platelet flux toward the wall was their sum: 
  PQPPVdKdKJJJ wwPRBC    P22RBC1121   (S17). 

The characteristic sizes of platelets and erythrocytes along with the values of ε1,2 
calculated at the necessary shear rates are shown in Tables S1 and S2. 
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Tables 
 
Table S1. The mean size of rabbit erythrocytes and platelets and the typical efficiency of 
their hydrodynamic interaction 

 Rabbit RBC Rabbit platelet 
d, µm 6*) 2†) 
V, µm3 70*) 2.4‡) 

λ λ1=0.333 λ2=1 
X1(λ) 0.327 0.460 
Y1(λ) 0.218 0.150 

 1832,  swh   ε1=0.0942 ε2=0.195 
*) See reference(3) 
†) See reference(1) 
‡) Estimated from the size of human platelets (Table 2) as  3,,,, / humanPrabbitPhumanPrabbitP ddVV   

 
 
Table S2. The mean size of human, rabbit and goat erythrocytes and human platelets and 
the typical efficiency of their hydrodynamic interaction 

 Human RBC Rabbit RBC Goat RBC Human platelet
d, µm 8*) 6*) 3*) 3†) 
V, µm3 95*) 70*) 25*) 8†) 

λ λ1=0.375 λ1=0.5 λ1=1 λ2=1 
X1(λ) 0.349 0.408 0.460 0.460 
Y1(λ) 0.195 0.153 0.150 0.150 

 1800,  swh    ε1=0.116 ε1=0.171 ε1=0.196 ε2=0.196 

*) See reference (3) 
†) See reference(20) 
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