Supplementary Information and Data

Strains/ plasmids	Description	Source
E. coli strains		
NovaBlue	Source of DNA for PCR amplification of <i>macAB</i> and	Novagen
	tolC genes – recA1 endA1 gyrA96 thi-1 hsdR17	
	supE44 relA1 lac [F' proAB lacIqZ∆M15 Tn10(Tetr)]	
C43(DE3)	Expression host for pET vectors - F- <i>ompT hsdSB</i>	1
	(rB-mB-) gal dcm (DE3)	
BL21(DE3)	<i>F</i> , omp <i>T</i> , hsd <i>S</i> β (<i>r</i> β - <i>m</i> β -), dcm, gal, (<i>DE3</i>) ton	Stratagene
KAM3(DE3)	Antibiotic sensitive host strain used for expression	2
	of pDuet vectors – $\Delta acrB$	
(<i>∆tolC</i>)TG1	Antibiotic sensitive host strain used for expression	3
	of pDuet vectors – $\Delta tolC$	
(<i>AtolC</i>)TG1(DE3)	λ DE3 lysogenic strain to enable T7 polymerase	This study
	production for use with pET vectors	
Plasmid cloning vectors		
pET21a	Expression of His-tagged proteins in <i>E. coli</i>	Novagen
pACYCDuet	Simultaneous expression of two proteins in <i>E. coli</i>	Novagen
pGEX6p-3	Expression of GST-tagged proteins in <i>E. coli</i>	GE Healthcar
Plasmid constructs		
pET-mtrD	<i>mtrD</i> cloned into pET21a(+) using NdeI-mtrD F and	This study
	XhoI-mtrD R primers	
pET-mtrE	<i>mtrE</i> cloned into pET21a(+) using NdeI-mtrE F and	This study
	HindIII-mtrE R primers	
pET-Δ34mtrC	<i>mtrC</i> mutant, encoding a derivative truncated at	This study
	position 34, cloned into pET21a(+) using NdeI- Δ 34-	
	mtrC F and XhoI-mtrC R primers	
pET-mtrC hairpin	α -helical hairpin domain of mtrC cloned into	This study
	pET21a(+) using NdeI-mtrC hairpin F and NdeI-	
	mtrC hairpin R primers	
pACYCDuet-mtrD	<i>mtrD</i> cloned into MCS1 of pACYCDuet, using BamHI-	This study
	mtrD F and HindIII-mtrD R primers.	
pACYCDuet-mtrC/mtrE	<i>mtrC</i> cloned into MCS1 of pACYCDuet using BamHI-	This study
	mtrC F, HindIII-mtrC R, <i>mtrE</i> cloned into MCS2 of	
	pACYCDuet using Ndel-mtrE F, Kpnl-mtrE R.	
pACYCDuet-	<i>mtrCmtrE</i> cloned into MCS1 of pACYCDuet using	This study
mtrC/mtrD/mtrE	BamHI-mtrC F, EcoRI-mtrC-SD-R, EcoRI-mtrE -ATG	
	F and Sall-mtrE R; <i>mtrD</i> cloned into MCS2 of	
	pACYCDuet using Ndel-mtrD F and KpnI-mtrD R.	
pGEX6p-3-NT-mtrC-GST	<i>NT-mtrC</i> cloned into pGEX6p-3 using MtrC NT For	This study
	BamH1and MtrC NT Rev Xho1 –GST-tag fusion	
pACYCDuet-mtrC-S	<i>NT-mtrC</i> cloned into pACYC using MtrC NT For Nde1	This study
	and MtrC NT Rev Xho1 – S-tag fusion	

TABLE 1: Strains and plasmids

1. Miroux B, Walker J. (1996) *J. Mol Biol.* **260**:289-98.

2. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T. (1998) *Antimicrob Agents Chemother*. **42**:1778-82.

3. Nagakubo S, Nishino K, Hirata T, Yamaguchi A. (2002) J Bacteriol. 184:4161-7.

Primers	
NdeI-mtrD F	CATATG GCTAAATTCTTTATCGACCGCCCCATTTTCG
XhoI-mtrD R	CTCGAG ATATTGTTTATCGTCCGAACCGGTTATACCCG
BamHI-mtrD F	GGATCC GGCTAAATTCTTTATCGACCGCCCCATTTTCG
SalI-mtrD R	GTCGAC ATATTGTTTATCGTCCGAACCGGTTATACCCG
KpnI-mtrD R	GGTACC ATATTGTTTATCGTCCGAACCG
NdeI-mtrC F	CATATG GGCTTTTTATGCTTCTAAGGCGATGCGTGCG
XhoI-mtrC R	CTCGAG TTTCGCTTCAGAAGCAGGTTTGGCTTCAG
BamHI-mtrC F	GGATCC GGCTTTTTATGCTTCTAAGGCGATGCGTGCG
SalI-mtrC R	GTCGAC TTTCGCTTCAGAAGCAGGTTTGGCTTCAG
NdeI∆34-mtrC F	CATATGGGCGGGCAGCCTGCGGGTCGG
NdeI-mtrC hairpin F	CATATG ATCGACAGTTCCACTTATGAAGC
XhoI-mtrC hairpin R	CTCGAG AATGCGCGAACGGTTCAGATTG
NdeI-mtrE F	CATATG AATACTACATTGAAAACTACCTTGACCTCTGTTG
HindIII-mtrE R	AAGCTT TTTGCCGGTTTGGGTATCCCGTTTCAATCCGC
BamHI-mtrE F	GGATCC GAATACTACATTGAAAACTACCTTG
KpnI-mtrE R	GGTACC TTTGCCGGTTTGGGTATCCCGTTTCAATCCGC
EcoRI-mtrC SD R	GAATTC TAATAATTCCTC <u>TTA</u> TTTCGCTTCAGAAGCAGG
EcoRI-mtrE ATG F	GAATTC ATGAATACTACATTGAAAACT
Ncol-mtrC hairpin F	CCATGG AGATCGACAGTTCCACTTATGAAGG
MtrC NT For BamH1	GGATCC GGCGGGCAGCCTGCGGGTCGGGAA
MtrC NT Rev Xho1	CTCGAG TTATTTCGCTTCAGAAGCAGGTTTGGCTTCAGATGCCGTC
MtrC NT For Nde1	CATATG GGCGGGCAGCCTGCGGGTCGGGAA
MtrC NT Rev Xho1	CTCGAG TTTCGCTTCAGAAGCAGGTTTGGCTTCAGATGCCGTC

TABLE 2: Primers

Notes: Bolded sequences indicate restriction endonuclease sites. Underlined sequences indicate start and stop codons.

MtrE Derivatives	Primers
N198L	For 5' CGCGCGAGGAAACCTACCTAGCTGTCCGAATTG 3'
	Rev 5' CAATTCGGACAGCTAGGTAGGTTTCCTCGCGCG 3'
R239E	For 5' CCGCGAACAGGCGGAGAATGCCTTGGCAAC 3'
	Rev 5' GTTGCCAAGGCATTCTCCGCCTGTTCGCGG 3'
K397E	For 5' CTATGACGCTTTAAGCGAGCAAAGCCGCGCCTC 3'
	Rev 5' GAGGCGCGGCTTTGCTCGCTTAAAGCGTCATAG 3'
Q441E	For 5' GGCTTTGTCGGCAGAGCTGACCCGCGCCG 3'
	Rev 5' CGGCGCGGGTCAGCTCTGCCGACAAAGCC 3'
E434K	For 5' GCAGCTATTCGGCGAAAGGTGCGGCTTTG 3'
	Rev 5' CAAAGCCGCACCTTTCGCCGAATAGCTGC 3'

TABLE 3: Primers used for mutagenesis of mtrE

Figure 1

A structural alignment of MtrE and OprM indicating the identical and homologous residues as well as the secondary structure elements in OprM as determined by X-ray crystallography.

Drug-induced opening of the MtrE channel. A bar chart showing the extent of inhibition of the growth of *E. coli* cells in response to 64 μ g/ml nafcillin or/and 150 μ g/ml vancomycin, of strain KAM3(DE3), harboring the plasmids **(A)** pACYC, **(B)** pACYC-MtrE, **(C)** pACYC-MtrCE and **(D)** pACYC-MtrCDE, as indicated. For each strain the OD₆₀₀ was determined after growth for 24 hours in the absence and presence of nafcillin and/or vancomycin and the growth inhibition was determined as the ratio of these measurements made in triplicate. In comparison to the control strain transformed with pACYC, the strains expressing MtrCDE, but not MtrE or MtrCE, were resistant to nafcillin and susceptible to vancomycin in the presence, but not the absence, of nafcillin. This data suggests that the the MtrD-nafcillin complex is required to trigger opening of the MtrE channel that enables vancomycin to enter the cells.

The binding of tetracycline to MtrD triggers opening of the MtrE channel. A bar chart showing the extent of inhibition of the growth of *E. coli* cells in response to 3 µg/ml tetracycline or/and 150 µg/ml vancomycin, of strain Δ tolC TG1(DE3), harboring the plasmid pACYC-MtrCDE. For each strain the OD₆₀₀ was determined after growth for 24 hours in the absence and presence of tetracycline and/or vancomycin and the growth inhibition was determined as the ratio of these measurements made in triplicate. The cells are clearly insensitive to vancomycin, indicating that the MtrE channel is closed within the MtrCDE assembly. There is a small, but reproducible, further decrease in the growth of cells treated with both tetracycline and vancomycin, compared to those treated solely with tetracycline. This data suggests that the MtrD-tetracycline complex is required to trigger opening of the MtrE channel that enables vancomycin to enter cells.

A molecular model for trimeric MtrE. (A) Mass spectrum of trimeric MtrE. The charge states and measured mass of the trimer is illustrated. The asterik indicates that a small molecule is bound to the protein complex, likely corresponding to a lipid. (B) Comparison of the homology model generated for MtrE with the crystallographic structure of ToIC.