Table S1

Yeast strains used in this study

Strain	Genotype	Reference
BY4742	ΜΑΤα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15	Open Biosystems
vms1∆∷HIS3	MAT α , his3 Δ 1, leu2 Δ 0, ura3 Δ 0, lys2 Δ 0, MET15, vms1 Δ ::HIS3	This study
vms1∆∷KanMX	MAT α , his3 Δ 1, leu2 Δ 0, ura3 Δ 0, lys2 Δ 0, MET15, vms1 Δ ::KanMX	Open Biosystems
vms1∆	$MAT\alpha A$, his $3\Delta 1$, leu $2\Delta 0$, ura $3\Delta 0$, lys $2\Delta 0$, MET 15, vms 1Δ ::KanMX, vms 1Δ ::HIS 3	This study
ufd2∆∷KanMX	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ufd2Δ∷KanMX	Open Biosystems
vms1∆ ufd2∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ufd2Δ::KanMX	This study
ubx1∆	MAT α , his3 Δ 1, leu2 Δ 0, ura3 Δ 0, lys2 Δ 0, MET15, ubx1 Δ ::KanMX	Open Biosystems
vms1∆ubx1∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx1Δ::KanMX	This study
ubx2∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx2Δ::KanMX	Open Biosystems
vms1∆ubx2∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx2Δ::KanMX	This study
ubx3∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx3Δ::KanMX	Open Biosystems
vms1∆ubx3∆	$MAT\alpha$, $his3\Delta1$, $leu2\Delta0$, $ura3\Delta0$, $lys2\Delta0$, $MET15$, $vms1\Delta$:: $HIS3$, $ubx3\Delta$:: $KanMX$	This study
ubx4∆	$MAT\alpha$, $his3\Delta1$, $leu2\Delta0$, $ura3\Delta0$, $lys2\Delta0$, $MET15$, $ubx4\Delta$:: $KanMX$	Open Biosystems
vms1∆ubx4∆	$MAT\alpha$, $his3\Delta1$, $leu2\Delta0$, $ura3\Delta0$, $lys2\Delta0$, $MET15$, $vms1\Delta$:: $HIS3$, $ubx4\Delta$:: $KanMX$	This study
ubx5∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx5Δ::KanMX	Open Biosystems
vms1∆ubx5∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx5Δ::KanMX	This study
ubx6∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx6Δ::KanMX	Open Biosystems
vms1∆ubx6∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx6Δ::KanMX	This study
ubx7∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, ubx7Δ::KanMX	Open Biosystems
vms1∆ ubx7∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ::HIS3, ubx7Δ::KanMX	This study
npl4∆	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, npl4Δ::KanMX	Open Biosystems
$vms1\Delta npl4\Delta$	MATα, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0, MET15, vms1Δ;:HIS3, npl4Δ::KanMX	This study
cdc48-3	MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3	This study
vms1∆cdc48-3	MATα, his3Δ1, leu2, ura3, lys2Δ0, MET15, cdc48-3, vms1Δ::KanMX	This study
pdr5 ∆	MAT α , his3 Δ 1, leu2 Δ 0, ura3 Δ 0, lys2 Δ 0, MET15, pdr5 Δ ::KanMX	Open Biosystems
$vms1\Delta pdr5\Delta$	MAT α , his3 Δ 1, leu2 Δ 0, ura3 Δ 0, lys2 Δ 0, MET15, vms1 Δ ::HIS3, pdr5 Δ ::KanMX	This study

Supplementary Table 1. List of strains used in this study. All strains were in the BY4742 background.

Supplementary Table 2 Table S2

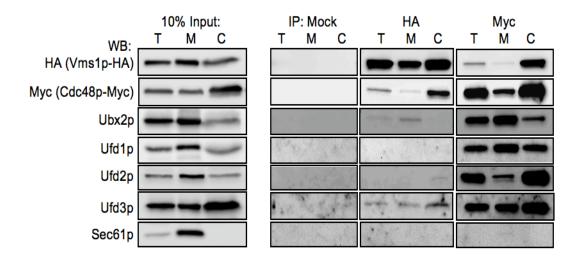
Oligos used in this study

Oligo	Sequence
VMS1A::KanMX-F	ggattttcaaaagatctgcacgcctgttgacaagcttccaatagcatctgtgcggtatttcacaccg
VMS1A::KanMX-R	gcaaatgctaagaaaaatcctaaaaatttgaatatgagatattccagattgtactgagagtgcac
VMS1A::HIS3-F	ggattttcaaaagatctgcacgcctgttgacaagcttccaatagcatcggatccccgggttaattaa
VMS1A::HIS3-R	${f g}$ caaatgctaagaaaaatcctaaaaatttgaatatgagatattccgaattcgagctcgtttaaac
VMS1 screen-F	ttcttggaggagtgccacag
VMS1 screen-R	ggcgtcattttcgcgttgag
ufd2 ∆∷His3-F	ccaatagaaaggtaaagttgaccacaagttgtttaaggggaaaagttaactttgaaagtagaaccctcattccatagatcccggatccccgggttaattaa
ufd2 ∆::His3-R	aaatataagacacattgagcgatgaaataagccttatttgattagggtcaattttgcaatttattctatcacttattcatgaattcgagctcgtttaaac
UFD2 screen-F	ccagtttcgagaatctagtgctg
UFD2 screen-R	gaagcaaatcgctttcccacaa
UBX1 screen-F	gtagtgacaaacatgcctctggat
UBX1 screen-R	gcagcagttattcatgatgctggt
UBX2 screen-F	tggctgaggattgccgccaagctg
UBX2 screen-R	actataaaggtaggccccagctcc
UBX3 screen-F	agaccgcctaattggatcatcg
UBX3 screen-R	aaactgatgcacgtgacactt
UBX4 screen-F	aagatagcgggcgcctcaaccgct
UBX4 screen-R	gtacaagttacggaaggcggagct
UBX5 screen-F	ctcgatgtctctgcagaagcga
UBX5 screen-R	caacagcggcagatgcatcgct
UBX6 screen-F	ggatttacctctagcgcgtcaacc
UBX6 screen-R	aaccaggatttgcacgagcca
UBX7 screen-F	gtgctgcccatatacagcaactt
UBX7 screen-R	gctgagttcttttgcggtgat
CDC48-Notl-F1	ttgcggccgcggtggccagcccaagaaacgga
CDC48-Xhol-R1	agetegagacgacgaggteetacageet
CDC48-Cterm-BamHI-R1	ac <u>ggatec</u> actatacaaatcatcatcttcc
CDC48 - Myc-BamHI-F1	acggatccGAACAAAAACTCATCTCAGAAGAGAGCATCTGtagtagttatatgccaggtatatttttattttaaatcg
CDC48-HA-BamHI-F1	acggatccTACCCATACGACGTCCCAGACTACGCTtagtagttatatgccaggtatatttttattttaaatcg
VMS1-NotI-F	ct <u>gcggccgc</u> ttcttggaggagtgccacag
VMS1-Sall-R	tcggtcgacggcgtcattttcgcgttgag
VMS1-Cterm-BamHI-R1	acggatecgtatttctttttcatcctttcttcgcg
VMS1-Myc-BamHI-F1	acggatccGAACAAAAACTCATCTCAGAAGAGGATCTGtgatgaggaatatctcatattcaaatttttagg
VMS1-HA-BamHI-F1	acggatccTACCCATACGACGTCCCAGACTACGCTtgatgaggaatatctcatattcaaatttttagg

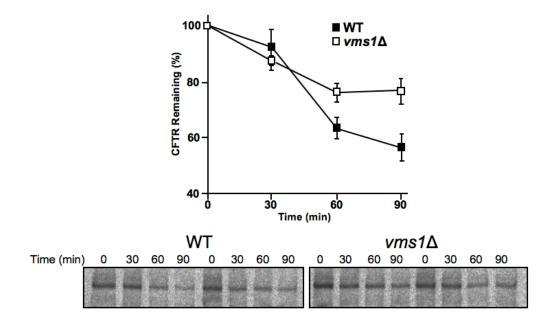
Supplementary Table 2. List of oligonucleotide primers used in this study. Restriction enzyme recognition sites are underlined and epitope tags are capitalized.

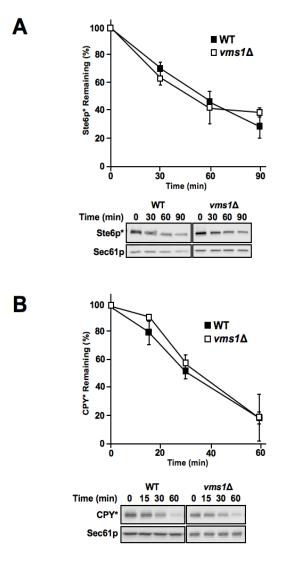
Supplementary Table 3

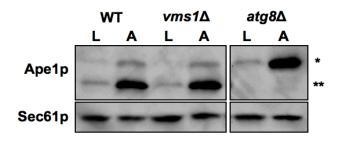
Table S3


|--|

Plasmid name	Description	Reference		
pSM1152	PGK1 promoter, CFTR-HA expression plasmid, 2 micron	Zhang, et al., 2002		
pSM1911	PGK1 promoter, Ste6p*-HA expression plasmid, 2 micron	Huyer, et al., 2006		
pUB23-Ub-Pro	GAL promoter, Ubiquitin-Proline β galactosidase, 2 micron	Bachmair, et al., 1986		
CPY*-3xHA	Endogenous promoter, CPY* 3xHA expression plasmid, CEN	Bhamidipati, et al., 2005		
pRS316-CDC48	Endogenous promoter, untagged CDC48, CEN	This study		
pRS426-CDC48	Endogenous promoter, untagged CDC48, 2 micron	This study		
pRS316-CDC48Myc	Endogenous promoter, C-terminal 1xmyc tagged CDC48, CEN	This study		
pRS316-CDC48HA	Endogenous promoter, C-terminal 1xHA tagged CDC48, CEN	This study		
pRS426-CDC48Myc	Endogenous promoter, C-terminal 1xmyc tagged CDC48, 2 micron	This study		
pRS426-VMS1	Endogenous promoter, untagged VMS1, CEN	This study		
pRS315-VMS1HA	Endogenous promoter, C-terminal 1xHA tagged VMS1, CEN	This study		
pRS316-VMS1HA	Endogenous promoter, C-terminal 1xHA tagged VMS1, CEN	This study		
pRS426-VMS1HA	Endogenous promoter, C-terminal 1xHA tagged VMS1, 2 micron	This study		

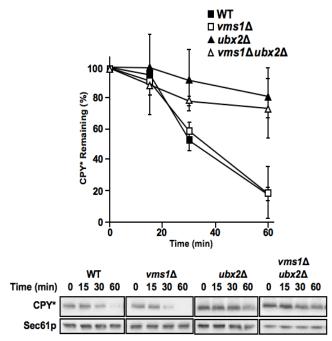

Supplementary Table 3. Plasmids used in the study. Unless referenced, all plasmids were constructed by PCR amplification and cloning as detailed in the Experimental Procedures section.


Supplementary Figure S1. *A*. An epitope-tagged form of Vms1p is functional. WT BY4742 and *vms1* Δ strains were transformed with an empty vector or a CEN plasmid containing either the untagged or HA-tagged form of Vms1p. Serial dilutions were spot plated on selective media lacking or containing 0.1µg/ml cycloheximide. *B*. An epitope-tagged form of Cdc48p is functional. The indicated strains were transformed with an empty vector or untagged or Myc-tagged forms of Cdc48p. Serial dilutions of the transformants were spot plated on selective media and then incubated at 30°C or 38°C. *C. VMS1* genetically interacts with a mutant allele of *CDC48*. A temperature sensitive mutant allele of *CDC48*, *cdc48-3*, was genetically crossed with strains lacking the *VMS1* gene. Tetrads were sporulated, dissected, and grown at 30°C. *D*. Cdc48p coimmunoprecipitates with Vms1p from ER-enriched fractions. ER-membranes were prepared as described in the Experimental Procedures, solubilized and immunoprecipitated with anti-HA agarose. Immunoprecipitates were resolved by SDS-PAGE and immunoblotted for anti-HA and Anti-Cdc48p.

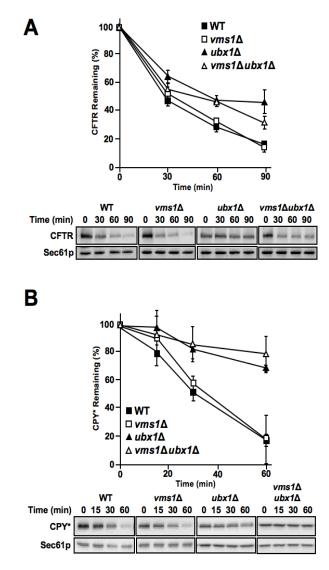

Supplementary Figure S2. Vms1p physically associates with other members of the Cdc48p complex. Total lysate (T), membrane (M), and cytosolic (C), fractions were prepared from cells expressing Vms1p-HA from a 2µ plasmid the under control of its endogenous promoter. Vms1p-HA was immunoprecipitated with anti-HA agarose and Cdc48p-Myc was immunoprecipitated with anti-Myc agarose as described in the Experimental Procedures. Immunoprecipitated material was resolved by SDS-PAGE followed by immunoblot analysis with the indicated antibodies.

Supplementary Figure S3. Loss of *VMS1* affects the ERAD of CFTR as assessed by pulse-chase analysis. Wild type and *vms1* Δ cells expressing CFTR-HA were radio-labeled for 1 hour and chased with cold methionine and cysteine. The indicated time points were taken, the cells were lysed and CFTR-HA was immunoprecipitated with anti-HA agarose. The immunoprecipitate was resolved on a 10% SDS-polyacrylamide gel and subject to radiography. Data were quantitated relative to the zero time point. N = 10, +/- SEM. Wild-type (WT) cells are denoted by the filled squares and *vms1* Δ cells are represented by the unfilled squares.

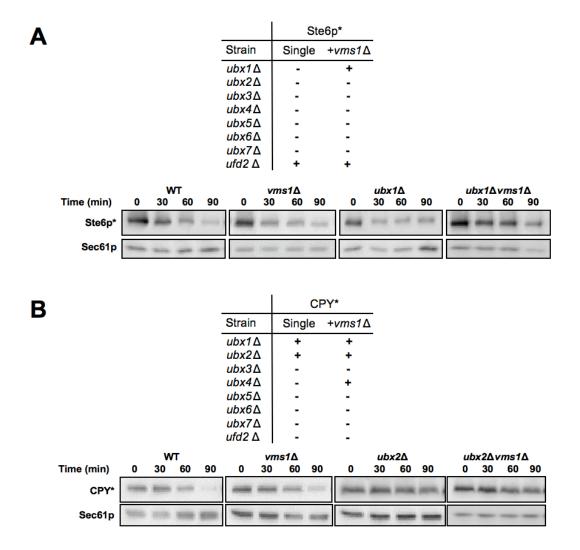
Supplementary Figure S4. Loss of *VMS1* has no effect on the degradation of two other model ERAD substrates, (*A*.) Ste6p* and (*B*.) CPY*, as assessed by cycloheximide chase. For both (*A*.) and (*B*.), wild-type is represented by filled squares and $vms1\Delta$ is represented by open squares.



L: Log-phase


A: Nitrogen starvation/Autophagic induction

- * Unprocessed Ape1p
- ** Processed Ape1p


Supplementary Figure S5. Strains lacking *VMS1* do not exhibit a defect in the Cytoplasmic-to-Vacuole Transport (CVT) pathway. Wild-type (WT), *vms1* Δ , and *atg8* Δ cells were grown in rich medium or in nitrogen-poor medium. Total lysates were prepared, and equal amounts of lysate were separated by SDS-PAGE for immunoblotting with a marker of CVT activity, Ape1p. Sec61p was analyzed as a loading control.

Supplementary Figure S6. The simultaneous loss of *UBX2* and *VMS1* does not result in a synthetic ERAD defect for CPY*. Wild-type is denoted by filled squares, $vms1\Delta$ by open squares, $ubx2\Delta$ by filled triangles, and $vms1\Delta ubx2\Delta$ by open triangles.

Supplementary Figure S7. The loss of *UBX1* results in an ERAD defect for CFTR and CPY*. For (*A*.) and (*B*.), wild-type is denoted by filled squares, $vms1\Delta$ by open squares, $ubx1\Delta$ by filled triangles, and $vms1\Delta ubx1\Delta$ by open triangles.

Supplementary Figure S8. A summary of degradation assays for the ERAD substrates Ste6p* (A) and CPY* (B). Strains listed in the tables in (A) and (B) were transformed with a plasmid engineered to express Ste6p*-HA or the CPY*-HA, respectively. Cycloheximide chase analyses were performed and data were quantitated relative to the zero time point. Beneath each table are representative images from select experiments.

						ι	Jb-F	ro-β-				
			Stra	ain	Sir	ngle	+vm	is1∆				
				ubx	(1Δ	-	F	-	F .			
				ubx2∆		•	F .	-	F .			
				ubx3∆		·			•			
				ubx4∆			•	-				
				ubx		·	•	-				
				ubx6∆		·	•	-				
				ubx7∆		·	•	-				
				ufd2∆			+		+			
	WT		vms1∆			ubx1∆		ubx1∆ vms1∆				
	0	15	30	0	15	30	0	15	30	0	15	30
Ub-pro-βgal →					-				-	-		-

Supplementary Figure S9. A summary of degradation assays for the N-end rule substrate, Ub-Pro- β gal. A radio-labeling pulse cycloheximide chase was performed and data were quantitated relative to the zero time point. A representative image corresponding to a select experiment is shown.