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Supplementary Table 1. List of strains used in this study. All strains were in the BY4742 
background.  
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Supplementary Table 2. List of oligonucleotide primers used in this study. Restriction enzyme 
recognition sites are underlined and epitope tags are capitalized.  
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Supplementary Table 3. Plasmids used in the study. Unless referenced, all plasmids were 
constructed by PCR amplification and cloning as detailed in the Experimental Procedures section.  
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Supplementary Figure S1. A. An epitope-tagged form of Vms1p is functional. WT BY4742 and 
vms1Δ strains were transformed with an empty vector or a CEN plasmid containing either the 
untagged or HA-tagged form of Vms1p. Serial dilutions were spot plated on selective media 
lacking or containing 0.1µg/ml cycloheximide. B. An epitope-tagged form of Cdc48p is 
functional. The indicated strains were transformed with an empty vector or untagged or Myc-
tagged forms of Cdc48p. Serial dilutions of the transformants were spot plated on selective media 
and then incubated at 30ºC or 38ºC. C. VMS1 genetically interacts with a mutant allele of CDC48. 
A temperature sensitive mutant allele of CDC48, cdc48-3, was genetically crossed with strains 
lacking the VMS1 gene. Tetrads were sporulated, dissected, and grown at 30ºC. D. Cdc48p 
coimmunoprecipitates with Vms1p from ER-enriched fractions. ER-membranes were prepared as 
described in the Experimental Procedures, solubilized and immunoprecipitated with anti-HA 
agarose. Immunoprecipitates were resolved by SDS-PAGE and immunoblotted for anti-HA and 
Anti-Cdc48p.  
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Supplementary Figure S2. Vms1p physically associates with other members of the Cdc48p 
complex. Total lysate  (T), membrane (M), and cytosolic (C), fractions were prepared from cells 
expressing Vms1p-HA from a 2µ plasmid the under control of its endogenous promoter.  Vms1p-
HA was immunoprecipitated with anti-HA agarose and Cdc48p-Myc was immunoprecipitated 
with anti-Myc agarose as described in the Experimental Procedures. Immunoprecipitated material 
was resolved by SDS-PAGE followed by immunoblot analysis with the indicated antibodies. 
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Supplementary Figure S3. Loss of VMS1 affects the ERAD of CFTR as assessed by pulse-chase 
analysis.  Wild type and vms1Δ cells expressing CFTR-HA were radio-labeled for 1 hour and 
chased with cold methionine and cysteine. The indicated time points were taken, the cells were 
lysed and CFTR-HA was immunoprecipitated with anti-HA agarose. The immunoprecipitate was 
resolved on a 10% SDS-polyacrylamide gel and subject to radiography. Data were quantitated 
relative to the zero time point. N = 10, +/- SEM. Wild-type (WT) cells are denoted by the filled 
squares and vms1Δ cells are represented by the unfilled squares.  
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Supplementary Figure S4. Loss of VMS1 has no effect on the degradation of two other model 
ERAD substrates, (A.) Ste6p* and (B.) CPY*, as assessed by cycloheximide chase. For both (A.) 
and (B.), wild-type is represented by filled squares and vms1Δ is represented by open squares. 
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Supplementary Figure S5. Strains lacking VMS1 do not exhibit a defect in the Cytoplasmic-to-
Vacuole Transport (CVT) pathway. Wild-type (WT), vms1Δ, and atg8Δ cells were grown in rich 
medium or in nitrogen-poor medium. Total lysates were prepared, and equal amounts of lysate 
were separated by SDS-PAGE for immunoblotting with a marker of CVT activity, Ape1p. 
Sec61p was analyzed as a loading control. 
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Supplementary Figure S6. The simultaneous loss of UBX2 and VMS1 does not result in a 
synthetic ERAD defect for CPY*. Wild-type is denoted by filled squares, vms1Δ by open 
squares, ubx2Δ by filled triangles, and vms1Δubx2Δ by open triangles.  
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Supplementary Figure S7. The loss of UBX1 results in an ERAD defect for CFTR and CPY*. For 
(A.) and (B.), wild-type is denoted by filled squares, vms1Δ by open squares, ubx1Δ by filled 
triangles, and vms1Δubx1Δ by open triangles. 
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Supplementary Figure S8. A summary of degradation assays for the ERAD substrates Ste6p* (A) 
and CPY* (B). Strains listed in the tables in (A) and (B) were transformed with a plasmid 
engineered to express Ste6p*-HA or the CPY*-HA, respectively. Cycloheximide chase analyses 
were performed and data were quantitated relative to the zero time point. Beneath each table are 
representative images from select experiments.  
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Supplementary Figure S9. A summary of degradation assays for the N-end rule substrate, Ub-
Pro-βgal. A radio-labeling pulse cycloheximide chase was performed and data were quantitated 
relative to the zero time point. A representative image corresponding to a select experiment is 
shown.  
  


