
A statistical analysis of the PPII propensity of amino acid guests in proline-rich
peptides (Supporting Material)

Mahmoud Moradi, Volodymyr Babin, Celeste Sagui∗, and Christopher Roland∗

Center for High Performance Simulations (CHiPS) and Department of Physics,
North Carolina State University, Raleigh, NC 27695-8202

I. SAMPLING PROTOCOL

The conformational equilibrium of the proline-rich peptides is characterized, among other things, by different
cis/trans patterns of the prolyl bonds. The free energy barriers separating these cis and trans states are relatively
high (of the order of 15 kcal/mol[1]), so that regular molecular dynamics (MD) simulations at room temperatures
are unable to overcome the barriers in a reasonable amount of time, and therefore cannot be used to study the
conformational equilibria directly. To deal with this sampling issue, we therefore made use of the replica exchange[2]
scheme.

In the replica exchange method[2], one considers several copies (replicas) of a system subject to some sort of
ergodic dynamics based on different Hamiltonians, and attempts to exchange the trajectories of these replicas at some
predetermined rate. Care must be taken with respect to the choice of the Hamiltonians, since these determine the
performance of the method. In this regard, it is convenient to consider the following two aspects: (a) the details of
the so-called “hot” replica that facilitates the crossing of barriers, and (b) the random walk between the replicas. The
latter is typically described in terms of an exchange rate between pairs of replicas. Let us assume, for a moment, that
these rates are sufficiently high, so that the random walk in replica space is efficient. The purpose of the “hot” replica
is to increase the barrier crossing rates (or, more formally, to decrease the ergodic time scale). One possibility for
this is to run the hot replica at high temperature. Another possibility[3] is to construct the hot replica by adding a
biasing potential to the original Hamiltonian that acts on some collective variable that (presumably) describes one of
the slow modes of the system that need “acceleration”. A combination of such Hamiltonian and Temperature based
replica exchange molecular dynamics (HT-REMD[3–5]) provides for a practical way to reduce the computational
costs associated with REMD sampling, since it facilitates the sampling in the “hottest” replica by both means, and
therefore also allows for a better “tuning” of the entire setup. Finally, the mixing properties of the hottest replica
must be assessed separately (by simulating it alone), in order to make sure it is ergodic, and that its ergodic time
scale is sufficiently short as to generate enough independent samples within a feasible runtime.

While elevated temperatures provide for a generic way to promote barrier crossing events, the use of biasing
potentials (U) allows one to directly focus on specific slow modes of the system. The latter can often be identified on
the grounds of chemical and physical intuition, and are usually described in terms of a collective variable σ = σ(r)
defined as a smooth function of the atomic positions r = r1, . . . , rN . The corresponding free energy or potential of
mean force (PMF)[6]:

f(ξ) = −kBT ln
〈

δ [ξ − σ(r)]
〉

,

(the angular brackets denote an ensemble average) provides for an ideal biasing potential to be used for the hottest
replica. Indeed, for the system biased with U(r) = −f [σ(r)], the probabilities of different values of the collective
variable would all be equal, since there are no barriers present. Unfortunately, the true free energy f(ξ) is typically
unknown in advance. However, even an approximate f(ξ), accurate within a few kBT , is often sufficient. The latter
can be computed in a variety of ways[6]. In this work, we make use of the Adaptively Biased Molecular Dynamics
(ABMD)[7] method in order to calculate suitable biasing potentials for HT-REMD simulations.

The ABMD[7] method is an umbrella sampling method with a time-dependent biasing potential modifying the
potential energy Φ of the system

ΦABMD (r, t) = Φ (r) + U
[

σ (r) , t
]

.

This biasing potential “floods” the true free energy landscape as it evolves in time according to:

∂U(ξ, t)

∂t
=

kBT

τF

G
[

ξ − σ (r)
]

.

∗Electronic address: sagui@ncsu.edu,cmroland@ncsu.edu



2

Here, G(ξ) is a positive definite, symmetric kernel (in analogy with the kernel density estimator widely used in
statistics [8]), which may be thought of as a smoothed Dirac delta function. For large enough τF (the flooding
timescale) and small enough kernel width, the biasing potential U(ξ, t) converges towards −f(ξ) as t → ∞[9, 10].
ABMD can be used in conjugation with the replica exchange protocol. In this case it is possible to use different
collective variables and/or temperatures on a per-replica basis (please see Refs.3, 7 for a more detailed exposition).
Currently, the ABMD method has been implemented into the AMBER v.10, 11 simulation packages[11], and is freely
available to the simulation community. To date, the method has been successfully used to investigate a variety of
biomolecular systems such as various peptides and sugars[1, 3, 5, 7, 12–14].

Our simulations proceeded in stages, and first computed the approximate free energy associated with a chosen
collective variable that “captures” the cis/trans transitions of the prolyl bonds at different temperatures using a
combination of ABMD and parallel tempering. In the next step, several additional replicas running at the lowest
temperature T0 were introduced into the setup. One of these replicas is completely unbiased, and therefore samples
the unbiased Boltzmann distribution at T = T0. The other replicas, also at T = T0, are subject to a reduced bias (i.e.,
these biasing potentials are scaled down by a constant factor). The purpose of these “proxy”-replicas is to ensure
adequate exchange rates, and thereby enhance the mixing. A more detailed presentation of this point can be found
in Ref.3.

II. EMPIRICAL POTENTIAL

There is reasonable consistency between the AMBER ff99SB force field and ab initio data for the cis/trans isomer-
ization of the prolyl bond. This issue has previously been discussed by us and others[14–19]. In brief, the energies
associated with the equilibrium state have been shown to be in very good agreement with the ab initio results, although
there are some differences associated with the transition barriers.

As an illustration, Fig.S2 shows a comparion of the energy of the Ace-Pro-Pro-NMe molecule as a function of the
Pro-Pro ω angle as obtained from the AMBER ff99SB force field and ab initio data. The structures were optimized
in the gas phase for ω = −180◦,−177◦, . . . , 180◦ (every 3◦) carefully following the various meta-stable branches, and
choosing the smallest values of energy. The ab initio data was calculated using the HF/6-31G* model with the latest
version of Gaussian. The relative depths of the minima compare very well (≈ 0.6 kcal/mol for ff99SB versus ≈ 0.1
kcal/mol for ab initio data). The ab initio transition barriers are somewhat larger, and differ by ≈ 2 kcal/mol. It is
important to note, however, that the precise values of the potentials away from the minima are not critically important
for our study, as we focus on equilibrium properties only. The latter are, of course, determined by the depths and the
shapes of the minima. Finally, apart from the empirical potential itself, there is several other sourves of error with
the next largest one being the GB/SA solvation model. The total error in computed properties of the molecules is
therefore very difficult to estimate a priori. Hence, we believe that the ultimate judgement is to be made on the basis
of comparison against experimental data.

III. SIMULATION DETAILS

The ABMD simulations were carried out using 20 replicas with temperatures ranging from 300 to 1200 K. These
simulations were performed for PPP and PAP peptides. Both PPP and PAP simulations involved long ABMD runs
with Ω as the collective variable using replica exchange with the temperatures distributed as: 300, 322, 347, 373,
401, 432, 464, 499, 537, 578, 622, 669, 720, 774, 833, 896, 964, 1037, 1115, 1200 K. Each replica had its own biasing
potential. A kernel width of 4∆ξ = 0.2 was used with a flooding timescale of τF = 25, 50, 100, or 200 ps at different
stages of the 100 ns runtime. We then repeated the simulations using the calculated biasing potentials, with PAP
results providing the initial estimate for the biasing potentials for the rest of the single-guest peptides (except for
PPP’, for which already available PPP results were used). A flooding timescale of τF =100,200 ps was used for the
different stages of these 10 ns long runs. The resulting one-dimensional free energy maps formed the basis of the
HT-REMD runs for enhanced equilibrium sampling. Prior to starting the production runs, we assessed the ergodicity
of the hottest replica (the one at the highest temperature biased by the approximate free energy associated with
the Ω at that temperature) by simulating it alone. It turned out that all possible cis/trans states were visited on a
timescale of a few hundred picoseconds with the Ω’s autocorrelation time being less than 2 ns. This translates into a
reasonable number of independent samples over the subsequent 100 ns production runtime. We note here that our
choice of the highest temperature in the temperature ladder, and the total number of replicas were also influenced
by the peculiarities of our local computer setup. We used 20 replicas with their full biasing potentials with the same
temperature distribution as used for the ABMD runs. Four more replicas were then added, all at T = 300 K: one
with no biasing potential, and three with the ABMD generated biasing potential scaled down by a factor of 0.49, 0.76
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and 0.9, respectively. The choice of temperatures, the scaling factors, and the ratio of temperature-varying versus
Hamiltonian-varying replicas (i.e., 20 versus 4) was to ensure a similar rate of exchange, which varied between 55 to
60%, between all neighboring replicas. We then ran 100 ns HT-REMD simulations for all the host-guest peptides,
with coordinates of the equilibrium T = 300 K replica sampled every picosecond, so as to provide 100,000 equilibrium
configurations.

IV. QUANTIFYING PPII CONTENT: FITTING TECHNIQUE AND PUCKERING

We use the (φ, ψ) dihedral angles (see Fig.S1 for their definition) to identify different regions[20] in the Ra-
machandran plot. According to this scheme, both PPII and PPI helices are found in the F region, with traditional
boundaries defined by −110◦ < φ < −40◦ and 130◦ < ψ < 180◦. In order to include all possible fluctuations of
the φ and ψ angles for both PPI and PPII conformations, we extended this region to cover −110◦ < φ < −20◦ and
(50◦ < ψ < 180◦ or −180◦ < ψ < −120◦). The β region consists of two parts: (−180◦ < φ < −110◦, 50◦ < ψ < 180◦

or −180◦ < ψ < −120◦) and (160◦ < φ < 180◦ and 120◦ < ψ < 180◦) regions. The α region is also divided into
two parts: αR defined by −120◦ < ψ < 50◦ and −160◦ < φ < −20◦ and αL defined by −50◦ < ψ < 110◦ and
20◦ < φ < 160◦. These regions are all clearly marked on the Ramachandran plots shown in Fig.1.

While this defines clear regions for the dihedrals of most residues, it turns out that for the non-proline guests, there
is considerable overlap between the populations that fall into the F and β regions of the Ramachandran plots, as
illustrated in Fig.2. In order to handle this situation, we model the distribution of the φ angle as consisting of the
sum of three Gaussians, and identify the area of the Gaussian centered in the F regions as defining the F content of
the residue (the technical details are provided in the Supporting Material).

For non-proline amino acids, the PPII content is simply given by its F population. However, both the cis and trans
isomers of proline fall in the F region. Since the cis isomer is a signature of the PPI structure, one should not count
these isomers if one is only interested in the PPII content of the peptide (however one should not forget that PPI
structures are also a signature of the proline host peptide, that could become quite important with other solvents).
The cis/trans pattern is determined by the ω torsion angles (see Fig.S1). We therefore classify a residue as PPII if
its dihedrals fall into the F region, with ω being in trans configuration. For non-proline amino acids (which always
have ω in trans), this definition based on dihedrals falling in the F region is unchanged.

Typical sample of the φ distributions, along with the fitted curves are shown in Fig.S3. The fitting was carried
out as follows. First, a histogram for each distribution was constructed from all the data in the F/β regions using 40
bins, with a width of 5◦ in the −200◦ < φ < −20◦ region. The data was then fitted by the sum of three Gaussians
using the Marquardt-Levenberg algorithm[21]. The resulting width, center, and weight of each Gaussian was used
as the initial guess for the latent variables for the Expectation-Maximization (EM) algorithm[22], which makes use
of all φ angle data in the F/β region directly. The resulting optimized values are therefore completely independent
of the histogram construction. Since the EM algorithm is iterative, we repeated the calculations until the desired
convergence was reached. Typically, only a few iterations were required. The area of the Gaussian centered in the F
region, multiplied by the percentage of samples in the F/β region defines the F content of the residue.

Finally, in addition to the cis/trans conformation, a proline residue is also characterized by its pyrrolidine ring
puckering. The latter may be described in terms of the endocyclic torsion angle χ1 (defined by atoms N -Cα-Cβ-Cγ ,
as shown in Fig.S1). Here χ1 takes on values of approximately 30◦ and -21◦ for the down- and up-puckered states,
respectively. In this study, we have identified the puckering patterns of the different conformers for completeness only,
since this structural feature does not play any significant role in the definition of PPII, and also does not appear to
correlate with either the F or PPII content.

V. PROLINE-GUEST CORRELATION

To gain a qualitative insight into the Pro-X correlation issue, consider Fig.S4 which shows the φX distribution of
the guest amino acid for select PXP peptides, given that the preceding P3 residue has its φ angle in the F (red solid
line) or α (dashed blue line) region of the Ramachandran plot. Each conditional probability distribution has two
peaks, one centered in the β and one in the F region. Comparing the red and blue distributions, it is clear that the
peak associated with the F region (centered about -75o) is more pronounced when P3 is in the F-region. In other
words, the red curve is always higher than the blue curve for that region. The peak heights are not the same for
the different PXP peptides and, roughly speaking, they track the P3-X correlations: the larger the difference in peak
heights, the stronger the expected correlation. Thus, the peak height potentially defines a useful measure of this
correlation. Figure S4 shows typical results ranging from PAP (characterized by a large difference in peak heights
and a high experimental PPII content) to PVP (small difference in peak height and low experimental PPII content).
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For illustrative purposes, this data can also be translated into free energy language, by converting the conditional
probability for φX into a PMF, as shown in Fig.S5. Since only free energy differences are meaningful, we have
shifted the resulting PMFs such that the minima associated with the β region coincide. This then defines ∆fF and
∆fα, as shown in the left panels of Fig.S5 for PAP, PGP and PIP. One can further define the free energy difference
∆∆f = ∆fF − ∆fα, which may be considered to be another representation of the P3-X correlation. Note that guest
data for Fig.S4 and the left panels of Fig.S5 are based on the state of P3, i.e., the state of X is conditioned on the
state of P3. It is of course possible to study the reverse condition, and ask how P3 is conditioned on the state of X.
The right panels of Fig.S5 illustrate such results: specifically, the PMFs (i.e., ∆fF and ∆fβ) as a function of the ψ
angle of the P3 residue. This leads to a definition of ∆∆f = ∆fF − ∆fβ , which may be interpreted as a measure of
the influence of X on P3.

While the correlation between P3 and X amino acids can also be expressed in other ways (see for instance Ref.23
for an interesting approach), we ultimately found that the Odds Ratio statistic gave us the cleanest results. Most
likely, this is because of the binary nature of the characteristics associated with the states of the P3 − X correlation,
which in turn are well represented with the Odds Ratio analysis.

Finally, in terms of results, Table S1 provides for a sequence-based analysis of the PXP and PXP’ peptides, while
Table S2 presents a full population analysis for the same. Also, Fig.S6 shows two typical two-dimensional free energy
plots, whose collective variables distinguish between trans and cis rich conformers. The plot shows that in the presence
of a non-proline guest, there is a slight preference for trans configurations, so that the overall cis content of the peptide
is reduced.
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peptide (a) number of t (b) number of F (c) secondary structure
0 1 2 3 >3 7 6 5 4 <4 first second

PPP 10 29 27 22 12 44 51 5 0 0 FFFFFFα (40) FFFFFFF (34)

PPP’ 13 28 31 16 12 54 43 3 0 0 FFFFFFF (42) FFFFFFα (33)

PQP 21 44 26 8 1 4 16 35 40 5 FFαβFFα (33) FFαβFFF (18)

PDP 14 43 28 12 3 1 15 46 37 1 FFαβFFα (31) FFαβFFF (28)

PGP 24 38 22 11 5 3 25 39 30 3 FFαβFFα (12) FFFNFFF (11)∗

PAP 17 45 28 9 1 4 14 38 41 3 FFαβFFα (35) FFαβFFF (23)

PAP’ 19 41 25 11 4 6 18 40 24 12 FFαβFFF (26) FFαβFFα (20)

PKP 15 42 28 15 0 4 21 36 34 5 FFαβFFα (27) FFαβFFF (19)

PSP 20 48 24 7 1 4 16 38 38 4 FFαβFFα (33) FFαβFFF (22)

PEP 20 43 24 10 3 3 13 39 41 4 FFαβFFα (35) FFαβFFF (25)

PHP† 16 42 30 11 1 4 18 42 34 2 FFαβFFα (29) FFαβFFF (24)

PFP 12 41 28 16 3 3 19 41 35 2 FFαβFFα (31) FFαβFFF (21)

PCP 20 42 26 10 2 4 20 41 32 3 FFαβFFα (27) FFαβFFF (20)

PNP 20 43 26 10 1 2 14 42 40 2 FFαβFFα (35) FFαβFFF (25)

PRP 12 40 34 12 2 4 22 42 29 3 FFαβFFα (24) FFαβFFF (21)

PMP 13 41 31 13 2 3 17 36 40 4 FFαβFFα (34) FFαβFFF (17)

PLP 18 42 26 12 2 3 15 39 38 5 FFαβFFα (32) FFαβFFF (21)

PHP‡ 13 39 30 15 3 3 16 40 40 1 FFαβFFα (35) FFαβFFF (23)

PTP 25 41 26 7 1 4 19 40 35 2 FFαβFFα (31) FFαβFFF (20)

PWP 10 36 33 18 3 5 23 39 30 3 FFαβFFα (26) FFαβFFF (16)

PIP 22 44 23 9 2 3 18 38 36 5 FFαβFFα (30) FFαβFFF (19)

PVP’ 21 43 26 8 2 4 19 48 28 1 FFαβFFF (32) FFαβFFα (25)

PVP 20 43 27 9 1 2 14 37 41 6 FFαβFFα (36) FFαβFFF (21)

PYP 9 39 32 16 4 4 19 38 35 4 FFαβFFα (30) FFαβFFF (19)

TABLE S1: Sequence based analysis of PXP and PXP’ peptides: (a) The populations of the structures based on the number
of c isomers. (b) The populations of the structures based on the number of residues in F region (ending Gly-Tyr is ignored).
(c) The two most probable patterns and their populations (as a percentage), considering the regions in the Ramachandran plot
i.e., F, α or β.
∗Gly in this structure is not in α, β, or F region (denoted as N).
†His is assumed to be protonated.
‡His is assumed to be neutral.
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peptide FtF Ftβ FcF Fcβ αtF αtβ αcF αcβ other
PQP 9 9 3 3 7 36 3 29 1
PDP 4 14 1 8 5 49 0 16 3
PGP 7 4 1 2 9 11 2 10 55
PAP 5 7 2 2 11 33 3 35 1
PAP’ 11 9 3 3 18 28 4 24 1
PKP 8 9 3 9 17 29 2 23 1
PSP 5 9 2 2 11 33 4 32 2
PEP 3 7 2 3 12 40 1 29 1
PHP∗ 5 12 3 3 9 28 5 34 1
PFP 5 9 5 7 14 37 3 22 0
PCP 5 10 3 3 14 37 5 21 2
PNP 3 13 1 4 8 43 1 24 3
PRP 4 13 5 11 6 31 3 25 1
PMP 6 11 4 6 18 30 2 23 0
PLP 3 12 2 5 10 40 3 24 1
PHP† 3 11 3 7 10 38 2 27 1
PTP 4 9 2 2 19 42 2 18 1
PWP 6 8 9 11 20 25 3 17 0
PIP 3 10 3 3 14 47 3 18 0
PVP’ 4 12 2 3 15 41 2 21 0
PVP 2 10 2 3 14 43 2 25 0
PYP 2 11 5 9 20 26 2 22 0

TABLE S2: Populations (as a percentage) of different patterns of the P3X sequence in PXP and PXP’ peptides considering
the c/t conformations of P3, as well as the Zimmerman regions of both residues.
∗His is assumed to be protonated.
†His is assumed to be neutral.
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FIGURE S1: Schematic diagrams illustrating the dihedral angles: (a) φ and ψ in guest residues (b) ω, φ, ψ, and χ1 in proline
residues.
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FIGURE S2: Ground state energy for the Ace-Pro-Pro-NMe molecule in gas phase as a function of the Pro-Pro ω angle:
HF/6-31G* (circles) and AMBER ff99SB (triangles). The computations were done for 121 values of the ω angle (every 3◦)
with symbols shown every fourth point to avoid clutter.
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FIGURE S3: The probability distribution (area normalized to unity) of the φ angle for the guest residue, i.e., φX , for (a) PQP,
(b) PVP, and (c) PDP. The raw data (red squares) is obtained from histograms, and the fitted curve to this data is marked as
a thick solid black line. This fitted curve may readily be decomposed into the sum of three Gaussians, as shown. The solid red
line belongs to the F region, while the two dashed blue lines fall into the β region of the Ramachandran plots.
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FIGURE S4: The probability distribution (area normalized to unity) of the φX angle of the guest residue for (a) PAP, (b) PHP
(with a neutral His), (c) PSP, (d) PTP, (e) PIP, and (f) PVP. The red solid (blue dashed) lines are obtained from samples that
had their P3 residue in F (α) region of the Ramachandran plots.
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FIGURE S5: “Conditional” free energies obtained from the conditional probability distributions. Left panels: PMF in terms of
the dihedral angle φX of the guest X for (a) PAP; (b) PGP; and (c) PIP. The solid (dashed) lines represent PMFs as obtained
from samples with the P3 residues in the F (α) region of the Ramachandran plots. The curves have been shifted so that minima
associated with the β region coincide. ∆∆f = ∆fF − ∆fα is indicated. Right panels: same as for left panels, except that
the PMFs are plotted as a function of the ψ angle of P3 (i.e., ψ3) and solid (dashed) lines denote samples for which the guest
residue falls in the F (β) region of Ramachandran plot. These PMFs have been displaced so that the minima corresponding to
the α region of P3 coincide, and now ∆∆f = ∆fF − ∆fβ .



12

FIGURE S6: Two-dimensional (Ω,Λ) free energy landscapes for (a) PPP and (b) PAP peptides in implicit water (see Refs.(1,5)
for a definition and discussion of these collective variables). Here, trans (cis) rich conformers are associated with Ω values less
(greater) than zero. Also, the larger the numerical value of Λ, the more the structures conform to an ideal PPII or PPI helix.
Comparing (a) and (b), one sees that in the presence of a guest amino acid, there is decrease in the overall cis content of the
conformers signalled by a slightly greater preference for structures with Ω less than zero.


