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1 DNA construct

The molecule tracked in the experiments described here was a fluorescently labeled 155
basepair (bp) DNA construct containing a 601 nucleosome positioning sequence [1].
The DNA was prepared by PCR and was labeled with biotin, Cy3B and ATTO647N
by incorporation of fluorescently labeled, HPLC purified primers (IBA GmbH). PCR
primers were as follows: 5’-TTGG CTGGAGAATC CCGGTGCCGA GGCCGCTCAA
TTGGTCGTAG ACAGCTCTAG CACCGCTTAA ACGCACGTAC GCGCTG-3’
(Cy3B-labeled nucleotide is underlined) 5’-biotin-TTGGACAGGA TGTATATATC
TGACACGTGC CTGGAGACTA GGGAGTAATC CCCTTGGCGG TTAAAACGCG
GGGGACAGC-3’ (ATTO647N-labeled nucleotide is underlined) In the DNA the
Cy3B and the ATTO647N were located 76 bp (24 nm) apart. Since this distance was
significantly bigger than the Förster radius of the fluorophores (≈ 5.5nm) there was
no FRET as confirmed by FCS experiments (data not shown).

2 Single-molecule microscopy

The experimental setup for single-molecule imaging has been described in detail pre-
viously [2]. Briefly, the microscope (Axiovert 100; Zeiss, Oberkochen Germany) was
equipped with a 100x oil-immersion objective (NA=1.4, Zeiss, Oberkochen, Ger-
many). The samples were illuminated for till = 1ms, 3ms or 5ms by an Ar+ laser
(Spectra Physics, Mountain View, CA, USA) with a wavelength of 514nm and a
30mW diode laser (Power technology, Alexander AR, USA) with a wavelength of
639nm. The length of the laser pulses till and the time lag between the pulses ∆t
were set by an acousto-optical tunable filter (AOTF). The illumination intensity was
set to 3±0.3 kW/cm2 for both lasers. A circular diaphragm was introduced in the back
focal plane of the tube lens to confine the illumination area and create a flat laser illu-
mination profile. An appropriate filter combination (dichroic Z405/514/647/1064rpc
and emission filter Z515/647m, Chroma Technology, Brattleboro,USA) permitted the
detection of individual fluorophores by a liquid nitrogen cooled slow-scan CCD cam-
era system (Princeton Instruments, Trenton, NY, USA). The time between two sets
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of laser pulses was limited by the readout time of the CCD chip, which was about
290ms. A dichroic wedge diverted the emitted light to two different regions of the
CCD according to emission wavelength, see Fig. 1. In this way the fluorescence sig-
nals from the Cy3B and ATTO647N molecules were separated. For the observation
of the diffusion of single DNA molecules in solution, the molecules were dissolved in
phosphate buffered saline (PBS: 150mM NaCl, 10mM Na2HPO4/NaH2PO4, pH 7.4),
5% dextran T500 / PBS or 10% dextran T500 / PBS. 1ml of the solution was placed
on a cover slip in a custom made sample holder and the focus of the microscope was
set several µm into the solution (depth of focus ≈ 1µm). The number of molecules
in the focal volume was chosen so low that individual fluorophores could be resolved.
For each time lag approximately 5000 images were taken (in both color channels),
which resulted in the measurement of about 10000-20000 diffusion steps. For typical
raw data see the supplementary movie (till = 5ms, ∆t = 200µs).
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Figure 1: Microscope setup. Two lasers (514nm and 639nm) were focused on the
backfocal plane of a high NA objective which resulted in widefield illumination of the
sample. The fluorescence light from the red and green fluorophores respectively was
split by a dichroic wedge and directed to different regions on the CCD chip. The two
lasers were pulsed independently by an AOTF.
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3 Derivation of theoretical result for the averaged

MSD

We assume the stochastic process underlying the random walk of the observed molecules
is ergodic, which means that the ensemble average < . . . > is identical to the time
average, which is the experimentally accessible quantity. In the following the overline
denotes the average over the illumination time.
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In the last step we expanded the brackets, regrouped the terms and switched the
time integral with taking the ensemble average, which is admissible because taking
the ensemble average is a linear operation. We further assume that the stochastic
process is second-order stationary, i.e.
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For normal, two-dimensional diffusion MSD(τ) = 4D |τ |.
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Combining these terms we arrive at
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Due to the finite positional accuracy there is an additional constant term which
equals 2(σ2

Cy3B+σ2
ATTO647N) =: 4σ2, where σCy3B and σATTO647N are the one-dimensional

positional accuracies for Cy3B and ATTO647N respectively. The theoretical expres-
sion derived above plus the constant offset 4σ2 was fit to the experimentally obtained
MSD with free fit parameters D and σ. The fit was a weighted least-squares fit with
the inverse square root of the errors of every data point as weights. On average
σ = 46nm. For the purpose of better comparability the offsets 4σ2 were subtracted
in Fig. 2 in the main text. The value for σ reported here is comprised of 1. a contri-
bution due to the finite accuracy for the position determination by Gaussian fitting
and 2. remaining chromatic aberration which has not been corrected for completely.
Chromatic aberration was corrected for with an accuracy of approximately 10nm (see
below).

4 Fitting of single-molecule signals

Details about finding and fitting single-molecule signals were described elsewhere
[3, 4]. Briefly, raw images were filtered with a two-dimensional Gaussian whose width
corresponds to the width of the point spread function (PSF) of the microscope. This
procedure optimized the signal to noise ratio. The positions of the pixels whose value
after filtering exceeded a certain multiple of the noise were used as initial values for
the fitting of a two-dimensional Gaussian in the unfiltered image. This thresholding
procedure separated true single-molecule signals from noise. From the Gaussian fit,
position, width and integrated intensity of the single molecule signal were determined.
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5 Correction for chromatic aberration

To achieve an exact spatial correlation between the two detection channels we imaged
a fluorescent bead which could be detected in both channels. The bead was adsorbed
to a coverslip and moved through the whole region of interest. The positions of the
bead in the Cy3B channel rgreeni and the the ATTO647N channel rredi were determined
as described in the previous section. To interpolate the shift for areas which had not
been covered by the bead fifth-order polynomials fx(r) and fy(r) were fit to the
measured positions (separately for the two directions x and y) such that

∑

i

(fx(r
green
i )− (xred

i − xgreen
i ))2 = minimal !

∑

i

(fy(r
green
i )− (yredi − ygreeni ))2 = minimal !

fx(r) and fy(r) then gave the corrective shifts – in x and y respectively– to be applied
to a position r measured in the green channel. Fig. 1d in the main text shows
an example for these shifts. To quantify how accurately the described procedure
eliminated chromatic aberration we applied the corrective shifts fx(r) and fy(r) to
the positions of the multifluorescent bead used to measure those shifts. From the
remaining differences between the positions in the two color channels we calculated
that chromatic aberration was eliminated down to a length scale of approximately
10nm.

6 Quantification of microscope stage drift

To exclude that drift of the microscope stage influenced the measurements we mea-
sured the MSD of fluorescent beads adhered to a cover slip, see Fig. 2. We found that
the stage drift (diffusion coefficient D = 3.1 ± 1.4 · 10−6µm2/s) is negligible on the
time scale relevant for our experiments (< 100ms).

7 Particle Image Cross-Correlation Spectroscopy

(PICCS)

PICCS calculates the correlation function between two different types of signals
termed ”green” and ”red” without loss of generality. The PICCS algorithm illus-
trated in Fig. 3 results in the cumulative correlation function Ccum(l,∆t) where ∆t
is the time-lag between the illumination of the two probes.

If, per image, there is exactly one pair of correlated signals the correlation function
Ccum (l,∆t) equals Pcum (l,∆t), the probability for finding a distance smaller than
l between a green and a red signal. If only for a fraction α of all green signals
there is a correlated red signal, we observe Ccum (l,∆t) = αPcum (l,∆t). Typically
there is more than one green signal per image and therefore also more than one red
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Figure 2: MSD of fluorescent beads adhered to a cover slip (blue circles). The data
is fit by a linear diffusion model (solid black line) with a diffusion coefficient of D =
3.1± 1.4 · 10−6µm2/s and a positional accuracy of 18nm

signal. If l gets bigger, neighboring red signals in close proximity are counted by the
PICCS algorithm although they are not correlated with the green signal. Additionally
there might be red signals which are not correlated with any green signal at all.
These red signals, in close proximity or not correlated with any green signal, lead to
an additional contribution cred · πl2 to Ccum(l,∆t) – under the assumption that the
positions of the red signals follow a uniform random distribution with density cred. In
total Ccum(l,∆t) = αPcum(l,∆t) + cred · πl2.

If there are no red signals in addition to the ones correlated with a green one, cred
can be calculated from the density of green signals cgreen, the correlation fraction α
and the image area A by

cred = α(cgreenA− 1)/A = α(cgreen − 1/A) ≡ c∗red (1)

If 1/A ≪ cgreen, cred ≈ αcgreen. In general cred = c∗red + cred,uncorr., where cred,uncorr. is
the density of red signals which are not correlated with any green signal.

In practice Pcum(l,∆t) is retrieved by subtraction of the linear part of Ccum(l,∆t)
when plotted against l2 and subsequent normalization to 1, see Fig. 4

Since the probability to find exactly the distance l between a green and a red
signal is ∂Pcum(l,∆t)/∂l the MSD could in principle be calculated by MSD(∆t) =
∫

∞

0
dl l2∂Pcum(l,∆t)/∂l. Due to noise this direct calculation would lead to large

errors. Instead the heuristic formula

Pcum (l,∆t) = β

(

1− exp

(

− l2

2 sd1(∆t)2

))

+ (1− β)

(

1− exp

(

− l2

2 sd2(∆t)2

))

(2)
was fit to Pcum(l,∆t) with 3 fit parameters β, sd1(∆t) and sd2(∆t), which gave a good
description of the data in all cases and eliminated high-frequency noise, see Fig. 4b.
The MSD is then simply MSD(∆t) = β sd1(∆t)2 + (1− β) sd2(∆t)2.
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Figure 3: PICCS algorithm. For all green signals (solid circles) the number of red
signals (open circles) are counted which fall into a circle of radius l from a green signal.
The total number is divided by the number of green signals. By increasing l from 0 to
lmax the whole correlation function Ccum(l,∆t) is constructed. To avoid edge effects,
only the green signals in the area bounded by the dashed line are used. Those signals
lie farther away from the edges of the image than the maximal distance lmax analyzed
Here lmax = 2µm. The signal positions were simulated with these parameters: density
of green signals cgreen = 1µm−2, correlation fraction α = 0.5 (results in a density of
red signals of cred = 0.5µm−2), correlation length σ = 150nm.

Finally we have to take into consideration that the positions of single-molecules
can be determined only with a finite positional accuracy. The probability P (ξ, η,∆t)
to observe two correlated signals separated by a vector (ξ, η) is the convolution of the
real probability Preal(ξ, η,∆t) and the probability density Ppos.acc.(ξ, η) describing the
(apparent) correlation due to the finite positional accuracy [5].

P (ξ, η,∆t) =

∫ ∫

dξ′ dη′Preal(ξ − ξ′, η − η′,∆t)Ppos.acc.(ξ
′, η′)

Ppos.acc.(ξ, η) =
1

2πσ2
exp

(

−ξ2 + η2

2σ2

)

(3)

where σ =
√
2σpos.acc. and σpos.acc. is the one-dimensional positional accuracy. For
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simplicity we assume here that the positional accuracy is the same for both types
of signals. The cumulative probability Pcum (l,∆t) is then found by integration of
P (ξ, η,∆t) in polar coordinates

Pcum (l,∆t) =

∫ l

0

dr r

∫ 2π

0

dφP (r, φ,∆t) (4)

with r =
√

ξ2 + η2 , φ = arctan (η/ξ).
The MSD calculated from this cumulative probability has a constant contribution

4σ2 [5] as already mentioned above.

8 Error determination

The errorbars in Fig. 2 in the main text were determined from Monte Carlo simu-
lations of the probability Pcum (l,∆t) with exactly the same parameters as found in
the experiments and the number of molecule positions actually recorded. For each
simulation the MSD was determined as described in the previous section and the
standard deviation calculated from 100 simulations run with identical parameters.

9 FCS measurements

FCS measurments were performed on a home-made confocal microscope described in
detail elsewhere [1]. The measured auto-correlation curves G(τ) were fit to a model
for 3D diffusion.

G(t) =
G0

(1 + τ/τd)
√

(1 + (a−2)(τ/τd))

with the free parameters G0, the auto-correlation amplitude, a, a geometric factor
equal to the ratio of width and height of the focal volume, and τd, the diffusion time.
First, this expression was fit to the auto-correlation curves for the three different
types of solvents (PBS, 5% dextran, 10% dextran) leaving all parameters free. Then
parameter a was fixed to the average over the values obtained from the 3 auto-
correlation curves. Finally, Eq. 9 was fit again to all auto-correlation curves with G0

and τd as free parameters, which led to the ratios of diffusion times reported in the
main text. Errors were determined as errors of the fit of the model to the measured
curves. Fig. 5 shows the measured auto-correlation curves and fits of Eq. 9.

10 Viscosity measurements

Bulk kinematic viscosity measurements were performed with a Cannon-Ubbelohde
viscometer (CANNON Instrument Company,State College, PA, USA). Measurements
of all different solvents used were conducted in triplicates and the error determined
as the standard deviation.
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Figure 4: Examples for (a) Ccum(l,∆t) and (b) Pcum(l,∆t) found in experiments with
∆t = 0.3ms, till = 3ms. The solid black line in (a) is a linear fit to the linear part of
Ccum(l,∆t) plotted against l2. This linear contribution is subtracted and the resulting
curve is normalized to one to obtain Pcum(l,∆t) shown in (b). The solid black line in
(b) is a fit of Eq. 2 to the data.
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Figure 5: Auto-correlation curves measured by FCS for the DNA oligomer in PBS
(black), 5% dextran (blue) and 10% dextran (red). The solid lines are fits of Eq. 9 to
the measured auto-correlation curves with G0 and τd as free parameters. For better
comparability all auto-correlation curves were normalized to the fitted G0
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