Tissue Micro Array - DLBCL

1 2 3	age 80	sex F	CD10	BCL-6	MUM-1	BCL2	Type	plκB α (%)	p-p65(%)	p52(%)	NIK	KD4
2				Colorados								BR3
			neg	pos	neg	1	GC	73.1	86.45	70.72	97.79	52.97
1 2 1	72	M	pos	pos	neg	1	GC	64.5	18.19	87.2	96.71	38.21
	44	М	neg	neg	neg	NA	ABC	71.9	82.02	70.24	NA	NA
4						NA		69.44	73.73	58.33	82.32	67.81
5						NA		NA	49.05	43.04	93.78	67.03
6	59	M	pos	pos	neg	2	GC	56.4	86.42	91.4	97.15	57.74
7	52	М	neg	neg	pos	2	ABC	43.9	82.39	83.61	98.26	86.15
8	40	F	neg	neg	pos	1	ABC	43.4	86.79	82.79	98.58	46.65
9	53	М	neg	neg	neg	2	ABC	87.9	76.67	75	99.02	41.87
10	23	M	1,000			1		61.2	77.93	73.69	NA	NA
11	73	F	neg	neg	pos	2	ABC	54.6	87.5	93.71	97.49	38.36
12	68	М	neg	pos	pos	2	ABC	40.5	62.61	90.39	95.85	99.13
13	63	M				NA		71.6	64.24	61.15	NA	NA
14	53	F	neg	neg	neg	2	ABC	70.9	85.94	86.3	99.47	18.39
15	77	F	pos	pos	neg	0	GC	74	86.45	70.72	NA	NA
16	68	F	neg	neg	neg	0	ABC	57.7	72.97	79.72	99.62	40.7
17	75	М	pos	pos	neg	0	GC	69.3	82.15	95.53	93.52	99.09
18	26	М	neg	neg	neg	2	ABC	9.8	19.93	78.96	97.19	28.65
19	78	М	neg	neg	neg	0	ABC	52.9	67.55	88.19	94.31	56.52
20	59	F	neg	neg	neg	0	ABC	41.9	67.52	85.24	95.94	66.39
21	55	F	neg	pos	neg	NA	GC	19	46.04	80.52	25	15
22	65	М	pos	pos	neg	0	GC	70.3	53.75	60.29	97.96	65.41
23	52	М				2		0.25	0.85	54.23	99.34	35.74
24	40	M	pos	pos	neg	NA	GC	89.8	70.36	86	NA	NA
25	64	F	pos	neg	neg	2	GC	10.4	31.44	68.55	93.61	84.97
26	62	F	neg	neg	neg	2	ABC	87	75.91	79.97	99.15	57.26
27	45	F				1		87.1	78.02	65.17	NA	NA
28	72	F	neg	neg	pos	1	ABC	52.3	73.51	93.06	95.88	54.79
29	51	М	neg	neg	pos	1	ABC	53.6	87.5	93.71	95.25	49.81
30	69	М	neg	neg	neg	2	ABC	46.2	86.97	88.68	91.88	45.33
31	67	F	neg	pos	neg	0	GC	66.5	79.65	80.84	94.89	85.95
32	62	М	neg	pos	neg	0	GC	63.7	65.76	79.85	93.14	73.63
33	34	М				0		76.2	73.36	87.61	99.33	51.48
34	72	F	neg	pos	neg	1	GC	78.9	58.55	100	NA	NA
35	33	М	neg	neg	neg	0	ABC	18.8	59.96	73.19	97.87	58.97
36	53	М	neg	neg	neg	0	ABC	32.3	34.33	50.32	60.96	26.87
37	53	М	neg	pos	neg	2	GC	67.5	89.07	71.82	NA	NA
38	53	М	pos	pos	neg	2	GC	63.7	85.67	78.34	NA	70.66
39	64	F	pos	pos	neg	0	GC	70.2	80.44	90.95	99.51	83.34
40	62	F	neg	neg	neg	0	ABC	44.8	65.8	62.26	99.56	47.4
41	42	М	neg	pos	pos	0	ABC	61.1	40.93	65.93	NA	57.86
42	50	F	neg	neg	neg	0	ABC	95.8	97.85	88.28	99.76	20.42
43	63	М	neg	neg	neg	2	ABC	54.61	NA	84.22	99.36	66.77

Figure S1. Tissue Microarray (TMA) and immunohistochemical analysis of DLBCL biopsies.

This table shows the data that characterize the 43 cases of DLBCL on the TMA slide by immunohistochemistry staining. The Applied Imaging Ariol automated analysis system (Genetix, New Milton, Hampshire, UK) was used for the quantification of plkB α , pp65, p52, NIK, and BR3 TMA slides. Numbers represent the percentage of positive cells in each biopsy-core. NA, not applicable. Pos, positive; Neg, negative. For bcl-2, numbers 0-2 represents imunnostaining intensity. 0, negative; 1, low; 2, high.

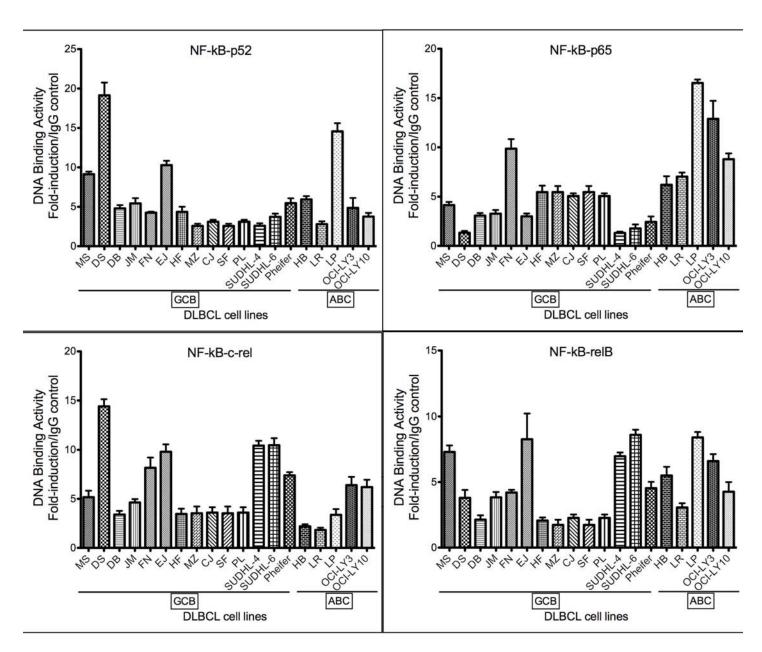


Figure S2A. NF-κB DNA-Binding Analysis in DLBCL Cell Lines. NF-κB DNA binding activity for each NF-κB member (as indicated) was measured using the TransAM–NF-κB family ELISA from Active Motif with nuclear extracts (5 ug) purified from 17 GCB- and ABC-derived DLBCL cell lines. DNA binding activity was quantified by colorimetry (mean ± SD). Each NF-κB component antibody was validated by incubating sample that includes a wild-type or a mutant cold probe or a nonspecific IgG control (data not shown). Data for the NF-κB component represent fold-induction over IgG control.

Figure S2B. NF- κ B DNA-Binding Analysis in Primary DLBCL Samples. NF- κ B DNA binding activity for each NF- κ B member (as indicated) was measured using the TransAM–NF- κ B family ELISA from Active Motif with nuclear extracts (5 ug) purified from 14 primary GCB-and ABC DLBCL cells. DNA binding activity was quantified by colorimetry (mean \pm SD). Each NF- κ B component antibody was validated by incubating sample that includes a wild-type or a mutant cold probe or a nonspecific IgG control (data not shown). Data for the NF- κ B component represent fold-induction over IgG control.