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Supplemental Figure 1. Transformation of migration time to molecular weight (MW) value. A, Representative electropherogram of the 3-(2-furoyl) quinoline-2-
carboxaldehyde (FQ)-labeled protein standards: trypsin inhibitor (20.1 kD), trypsinogen (24 kD), carbonic anhydrase (29 kD), glyceraldehyde-3-phosphate
dehydrogenase (36 kD), and bovine serum albumin (66 kD). Experimental conditions were the same as in Figure 1 in the manuscript. The samples were analyzed in
triplicate. B, Log of molecular mass of standard proteins as a function of their electrophoretic mobilities. Mobilities were calculated as L/(Et); L = capillary length,

30 cm; E = electrical field, =570 V/cm; t = migration time. A.U. = arbitrary units.
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SUPPLEMENTAL MATERIAL

Calibration Curve for Determination of
Molecular Weight

Supplemental Figure 1A displays conspicuous peaks
representing standard proteins with molecular weights from
20,000 to 66,000 Da. Electrophoretic mobility for each
standard protein is calculated from the migration time by
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Supplemental Figure 2. Electropherogram of metal-catalyzed oxidation—bovine serum albumin (MCO-BSA) labeled with Alexa 488 hydrazide. A, After the fourth
wash; B, After the fifth wash. Washes were performed using Amicon-4 centrifugal filter units. Separation, =570 V/cm; hydrodynamic injection, 11 kPa, 1 s; sieving
matrix, 20 mM Tris, 20 mM Tricine with 8% dextran (513 kD), and 0.5% sodium dodecyl sulfate, pH 8.0. A.U. = arbitrary units.
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Supplemental Figure 3. Principal component analysis (PCA) of mitochondrial protein electropherograms. Score plots of PCA-analyzed samples presented in Figure
3 were projected in a two-dimensional space of the 1s/2nd (A), 1st/3ra (B), and 2nd/3rd (C) principal components to aid the appreciation of sample separation shown in
Figure 3 in three dimensions (A, young fast-twitch; @, old fast-twitch; A, young slow-twitch; O, old slow-twitch). This series of projections demonstrates separation of
the following groups in two dimensions: old slow-twitch vs fast-twitch (A); young slow-twitch vs fast-twitch and young vs old slow-twitch (B); and young slow-twitch
vs fast-twitch, old slow-twitch vs fast-twitch (C).
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using the formula below. Here, p is electrophoretic mobility;
L is capillary length (30 cm); T is migration time; and V' is
applied voltage, —17.1 KV.
L2

VT

Supplemental Figure 1B shows a relationship between the
logarithm of molecular mass and electrophoretic mobility
for the five standard proteins indicating that the dextran

separation system described in our manuscript is a size-
based separation.

y = —1.007x + 6.047(R*> = 0.911) (1)

Therefore, the MW range of important proteins can be
estimated with the above calibration curve and their
migration times.

u

Removal of the Alexa 488 Hydrazide Excess
Does Not Cause Protein Losses

To assess the extent of protein loss during the Amicon
washes, we analyzed the peaks of both free Alexa 488
hydrazide and labeled oxidized BSA before and after the
Amicon washes (See ‘‘Materials and Methods’’ section for
the detailed procedure). Supplemental Figure 2 shows that
the intensities for the Alexa 488 hydrazide peaks decrease
at the fifth wash (Trace B) in comparison to the fourth wash

Supplemental Table 1. Total Variance (R*X*")
Explained by PCs in the PCA-Class Model

Sample PCA Class PC1 (%) PC2 (%) PC3 (%) PC4 (%)
Young, fast-twitch 1 38.6 64.5 77.2 87.5"
Old, fast-twitch 2 60.5 75.7 82.7" N/A
Young, slow-twitch 3 46.0 64.2 7431 N/A
0Old, slow-twitch 4 62.9 76.47 N/A N/A

Notes: Young: 12-month-old Fischer 344 rats; Old: 26-month-old Fischer
344 rats; Fast-twitch: semimembranosus, plantaris, extensor digitorum longus,
and tibialis anterior muscles; Slow-twitch: soleus muscles.

#R%X is the total variance explained by the selected number of principal
components (PCs).

The selected number of PCs for each sample.

PC =principal component; PCA = principal components analysis; N/A =not
available.

of the sample (Trace A). In contrast, the peak for the
oxidized BSA does not change.

Supplemental Figure 3 shows a series of two-dimensional
score plots. These plots are useful to better appreciate the
degree to which individual groups are separated in a three-
dimensional plot (c.f., Figure 3 in the main article).

Supplemental Table 1 shows that two to four principal
components are needed to explain more than 70% of total
variance of the four disjoint models. These four disjoint
models were then used to analyze the samples in the
validation data set (i.e., the remaining 25% of observations).
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