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Supplemental Information 

 

The following information is included in the Supplemental file for this manuscript: 1) Additional 

detail regarding methods used in the computational model, 2) Behavioral results related to the role of 

antipsychotic medication in reinforcement learning, 3) Behavioral results related to frequency vs. 

magnitude bias, 4) Correlations between reinforcement learning parameters in the computational model 

and symptoms, and 5) Additional analyses indicating the specificity of a deficit in uncertainty-driven 

exploration in schizophrenia and its relationship with anhedonia. 

 

Supplemental Methods and Materials 

Computational Model 

The model assumes that participants track the expected value  for the reward they expect to 

gain in a given trial t. This value is updated as a function of each reward experience using a simple delta 

rule: 

 

where α is a learning rate controlling the degree to which values are updated on each trial, 

and δ is the reward prediction error signaled by midbrain dopamine neurons (1, 2), which is simply the 

reward outcome minus the prior expected value.  

 

Previous computational modeling in healthy participants identified multiple factors that govern 

trial-by-trial RTs, all of which capture non-overlapping variance in this task even when penalizing model 

fits for the inclusion of multiple parameters (3): 

• An intercept K indicating participants’ baseline motor response tendency independent of 



Strauss et al. 

2 

other factors; 

• A parameter ρ which predicts that individuals adjust RTs in the direction of greater probability of 

obtaining a positive outcome based on the observed reward statistics. Bayes’ rule is applied to track 

the probability of obtaining a positive prediction error, separately for fast (RT < median) or slow (RT 

> median) responses. (Only two response categories are needed because the reward functions are 

monotonic: any asymmetry in rewards for fast vs. slow responses can be capitalized by simply 

adjusting RTs in the direction of greater reward probability.) These probabilities are updated as a 

function of each outcome: 

 

where θ reflects the parameters governing the belief distribution about likelihood of reward 

prediction errors for each response, and δ1...δn are the prediction errors observed thus far 

(on trials 1 to n).  

The belief distribution is initialized to be uniform at the beginning of each block of trials. The 

posterior distribution is calculated after each response and outcome. At each trial, response times are then 

predicted to vary as a function of the difference between the reward probability estimates (means μ of the 

beta belief distributions) for fast and slow responses. The fast and slow RT split is an assumption that is 

justified for several reasons. First, because reward functions are monotonic in this task, all one has to do 

is keep track of reward statistics for fast and slow responses and adjust RTs in the direction of that with 

the highest expected value. Keeping track of just two response-reward associations is perhaps more 

plausible than separately maintaining reward statistics for multiple RTs, particularly when the task 

requires comparing the expected values (and uncertainties) of these different responses. Finally, modeling 

the task in this way (with both the mean value and uncertainties of each response category) allows us to 

provide a reasonable fit to the data that is improved relative to not incorporating either of these factors. 

Nevertheless, the free response time allows us to assess directional changes in RT consistent with that 
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expected by incremental adjustments or exploration, even if the change in RT does not always correspond 

to a categorical shift from fast to slow or vice-versa.  

• An exploration parameter ϵ predicts trial-by-trial RT swings to occur when one is relatively more 

uncertain about the reward probabilities for fast or slow responses. The standard deviations σ of the 

above beta distributions are computed on each trial as estimates of outcome uncertainty for each 

response category. In particular, the  Explore term of the model is computed as follows: 

 

where ϵ is a free parameter that scales the degree of exploration in proportion to relative uncertainty and 

 are the standard deviations quantifying uncertainty about positive outcomes 

given slow and fast responses, respectively. These uncertainty estimates generally decrease with more 

evidence (i.e., one becomes more confident about the reward probabilities for fast responses after making 

several fast responses), albeit at a slower rate for more variable outcomes. Thus, with sufficiently high ϵ, 

RT swings are predicted to occur in the direction of greater uncertainty about the likelihood that outcomes 

might be better than the status quo; 

• Two learning rate parameters, , estimating the degree to which individuals speed and 

slow RTs as a function of accumulated positive and negative prediction errors, respectively. In 

contrast to the Bayesian statistical learning process (captured by parameter ρ), these parameters 

capture a more implicit bias to produce speeded responses following multiple positive prediction 

errors, and slowed responses following multiple negative prediction errors. These are thought to 

capture basal ganglia dopaminergic mechanisms modulating corticostriatal synaptic plasticity in the 

Go and NoGo pathways, promoting approach and avoidance responses respectively, and consistent 

with available genetic and pharmacological data in this task (3, 4); 
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• A response recency parameter λ scaling the impact of the previous response’s RT on the current 

choice, independent of any change in value (see also similar parameters in other reinforcement tasks 

(5)); 

• A “going for gold” parameter ν predicting that participants will adjust RTs toward that which has 

produced the single largest reward experienced thus far, and which is at least one standard deviation 

greater than the other rewards, regardless of the probability of occurrence. As noted above, each of 

these parameters captures variance in this task beyond that of the others (3). The complete RT model 

for each clock face state s and trial t is thus as follows: 

 

where  terms are the cumulative sums of positive and negative prediction 

errors, scaled by αG and αN, respectively. Complete model details are given in (3).  

 

In all models, we used the Simplex method (6) with multiple starting points to derive best fitting 

parameters for each individual participant that minimized the sum of squared error between predicted and 

actual RTs across all trials, . A single set of parameters was derived for each subject 

providing the best fit across all task conditions. 
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Supplemental Results 

 

Descriptive Statistics for Primary Behavioral Task Conditions 

Table S1. Means and SDs for CEV, DEV, and IEV conditions in patients (SZ) and controls (CN). 
 CN (n = 39) SZ (n = 51) 

CEV 2277 (588) 2199 (644) 

DEV 1989 (557) 1992 (623) 

IEV 2518 (594) 2454 (628) 

                    Values reflect mean RT scores (SD) averaged across all trials for each condition. 
 

 We also examined the potential for Group differences in Go and No Go learning in DEV and IEV 

conditions after controlling for baseline differences in CEV performance. Using DEV-CEV and IEV- 

CEV difference scores, a 2 Group (SZ vs. CN) X 2 Condition (DEV-CEV vs. IEV-CEV) repeated 

measures ANOVA indicated a nonsignificant interaction, when calculated using the second half of trials 

per block (F = 1.46, p = 0.23). 

 

Frequency vs. Magnitude Bias 

To determine whether patients and controls differed with regard to showing a greater bias toward 

learning about reward probability (frequency) or magnitude, we examined group differences in behavioral 

performance in the CEVR condition. Specifically, we calculated a probability vs. magnitude bias score by 

taking the difference in RT between the CEVR and CEV conditions (P-M bias = CEVR-CEV). In both 

groups, RTs were longer in the CEVR than CEV condition, CN = 303 ms (602 ms); SZ = 300 ms, (905 

ms); however, a one-way ANOVA indicated that there were no significant differences between SZ and 

CN on the P-M bias estimate, F (1, 88) < 0.01, p = 0.987 (η2 = 0.00). This indicates that both groups have 

a bias toward higher reward frequency.  
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We also examined frequency vs. magnitude learning in relation to negative symptoms. Figure S1 

presents frequency-magnitude bias data for HI-NEG, LOW-NEG, and CN subjects, and indicates that 

both the LOW-NEG and CN subjects show the general pattern of having a bias toward learning more 

about reward probability than magnitude (as indicated by the positive difference score), while the HI-

NEG patients fail to show a bias toward either probability or magnitude. One-way ANOVA supported 

this interpretation, indicating a significant difference among the 3 groups on the probability vs. magnitude 

bias measure (P-M bias = CEVR-CEV), F (2, 85) = 3.27, p = 0.04 (η2 = 0.07). Post hoc Scheffe contrasts 

indicated significant differences between the HI-NEG and LOW-NEG patients (p = 0.045), but not 

between the HI-NEG and CN (p = 0.234) or LOW-NEG and CN (p = 0.558). Thus, while the LOW-NEG 

and CN groups both show a pattern toward learning more about probability than magnitude, the P-M 

contrast only reached statistical significance between HI-NEG and LOW-NEG groups. This is further 

displayed by the correlation between SANS total negative symptoms and the P-M contrast, which was at 

a trend level of significance (r = -0.26, p = 0.08). Overall, these results suggest that patients were less 

sensitive to reward magnitudes than probabilities, but counter-intuitively, those with the most severe 

negative symptoms showed relatively greater sensitivity to reward magnitudes. To determine whether the 

computational modeling analyses might shed light on this issue, we conducted an exploratory analysis in 

which we correlated other model parameters with SANS total scores (despite the fact that, unlike αG, 

these other parameters did not differ overall between patients and controls). In this analysis, we found 

only one parameter to correlate with SANS Total: the “going for gold” parameter. This positive 

correlation indicates that patients with the greatest degree of negative symptoms were more likely to 

adjust their response time toward that which had previously yielded an exceptionally large reward 

magnitude, regardless of its probability of occurrence. This finding may indicate that those patients with 

the most severe negative symptoms are simply insensitive to all reward outcomes except those having the 

very largest values – i.e., they may have a higher threshold for considering an outcome relevant.  
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Figure S1.  Frequency vs. magnitude bias in HI-NEG, LOW-NEG, and CN subjects. Mean RT difference 
score between CEVR and CEV conditions, reflecting potential biases in learning more about reward 
frequency or reward magnitude. Extreme positive difference scores reflect a bias toward learning more 
about reward frequency then magnitude, values near 0 reflect the lack of a bias toward frequency or 
magnitude, extreme negative difference scores reflect a bias to learn more about magnitude then 
frequency.  

 

The Role of Antipsychotic Medications in Reinforcement Learning 

To further examine the effects of antipsychotic medication, patients were divided into medication 

groups based upon low potency and high potency D2 blockade. Low potency drugs included clozapine, 

quetiapine, and olanzapine. High potency drugs included aripiprazole, haloperidol, risperidone, 

fluphenazine, and ziprasidone. Patients on multiple medications were excluded from these analyses (n = 

10). Repeated measures ANOVA indicated a nonsignificant Medication Group (high vs. low) X 

Condition (DEV, IEV) interaction (F = 0.15, p = 0.70). Individual one-way ANOVAs also indicated that 

the groups failed to differ in the DEV (F = 0.87, p = 0.36), IEV (F = 2.10, p = 0.16), or P-M contrast (F = 

2.33, p = 0.14) conditions. Thus, when patients are divided into antipsychotic medication groups, there 

appears to be little difference in reinforcement learning (see Table S2). 
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Table S2. Mean (SD) RT (ms) Performance on Reinforcement Learning Conditions in Patients in Low 
Potency and High Potency D2 Blocking Antipsychotics 

 Low Potency 
D2 Blockers (n = 32) 

High Potency 
D2 Blockers (n = 9) 

DEV Change Score (Go Learning) -130 (441) 29 (495) 

IEV Change Score (No Go Learning) 13 (487) 274 (431) 

P-M Bias (Probability vs. Magnitude) 385 (833) -148 (1225) 

 

 

Correlations Between Reinforcement Learning Model Parameters and Symptoms 

Spearman correlations were calculated between modeling parameters and the SANS total score, 

BPRS positive, BPRS disorganized, and BPRS total symptom scores to determine the specificity of 

symptom associations. Only the aforementioned correlation between “going for the gold” and SANS total 

was significant. The likely interpretation for why the exploration parameter correlated with SANS 

anhedonia, but not the BPRS negative syndrome score is because the BPRS does not include items for 

anhedonia or avolition. The lack of correlations with other symptom domains reflect the specificity of the 

association with anhedonia (which as rated by the SANS is quite distinct from related concepts like 

depression). 

 

Model-Fits 

Model fits evaluated with the Akaike Information Criterion (AIC) did not differ across groups. 

There was a nonsignificant trend for fits to be improved in patients (mean AIC = 2955) relative to 

controls (mean AIC 3035, p = 0.08), possibly due to the reduced exploratory RT swings in patients which 

are difficult for the model to fit and cause penalties in squared error (which are partially but imperfectly 

mitigated by the model explore term). Figure S2 depicts example single subject data, showing the 

correspondence of the model Explore term with trial-by-trial RT swings (similar to 3). 



Strauss et al. 

9 

 

Figure S2. Example single subject data showing correspondence between Explore parameter and trial-by-
trial RT Swings 

 

Figure S3 displays probability distributions of experienced reward statistics representing mean 

and variance of expected outcomes. Plots A and B depict beta probability density distributions 

representing the belief about the likelihood of achieving a better than expected outcome for fast and slow 

responses, respectively. The x-axis is the probability of a positive prediction error and the y-axis 

represents the belief in each probability, with the mean value μ representing the best guess. Dotted lines 

reflect distributions after a single trial; dashed lines after 25 trials; solid lines after 50 trials. Differences 

between the μfast and μslow were used to adjust RTs to exploit rewarding responses. Means evolve to be 

higher for fast responses in DEV and for slow responses in IEV. The standard deviation σ, which 

decreases as a function of experience, was taken as an index of uncertainty. Exploration was predicted to 

modulate RT in direction of greater uncertainty in a given trial about whether outcomes might be better 

than the status quo. 
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Figure S3.  Probability distributions of experienced reward statistics representing mean and variance of 
expected outcomes 

 

Uncertainty-Based Exploration 

We also examined the relationship between uncertainty-driven exploration and negative 

symptoms. However, nearly one half of the patients (23/51, compared with 8/39 controls) were best fit by 

an exploration parameter of 0. (This proportional group difference in number of subjects with non-zero ǫ 

was also significant; two-tailed Fisher’s exact test p = 0.02). This was caused by the fact that we had 

constrained the exploration parameter to be positive in the first run, i.e., it would only predict a change in 

RT in proportion to greater uncertainty, and if subjects did not employ this strategy their exploration term 

would be zero. Because many of the patients had zero exploration terms (consistent with the significant 

reduction in exploration in patients) it was not possible to correlate this term with symptoms within the 

patient group, due to relative lack of variability. This lack of variability precluded us from properly 

investigating individual differences as a function of avolition/anhedonia in the basic model. To address 

this issue, we re-ran the model fits without enforcing 0 as the lower bound for exploration, but instead 

allowing it to reach a negative value. Negative values would be expected if participants are more likely to 

avoid actions with uncertain outcomes rather than to explore them, and to instead continue to make those 

A B 
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responses for which reward statistics are more certain. Thus, individuals with more negative exploration 

terms would be that much more unlikely to produce exploratory responses in proportion to uncertainty. 

We verified that this analysis produced interpretable results in our original genetics study, in which 

explore values were bounded at zero (3). We confirmed that the significant gene-dose effect of the COMT 

gene continued to hold in this analysis (with met/met showing the highest exploration and val/val the 

lowest; p < 0.05). Only here, participants in the val/val genotype exhibited, on average, negative explore 

values – confirming that they were particularly unlikely to explore uncertain actions.  

When we refit model parameters across all subjects, allowing for negative exploration, the same 

effects, and their significance emerged (explore p < 0.02; αG p = 0.07; logistic explore p = 0.02, αG p 

= 0.028), with no difference in any other model parameters. Allowing the exploration term to reach 

negative values thus revealed individual differences such that those with more negative values are that 

much less likely to explore, and that much more likely to stick with certain choices. That the main finding 

between patients and controls replicates when this term is allowed to be negative in both groups makes us 

more confident that the overall patient reduction in uncertainty-driven exploration is reliable and not 

dependent on this implementational detail. 

Additionally, given the unique association with anhedonia, we further investigated whether the 

impact of anhedonia on exploration was specific to uncertainty. First, we computed whether increasing 

anhedonia was simply associated with reduced overall RT variability, which might lead to reduced  

parameter estimates without necessarily implying that patients are less sensitive to uncertainty about 

possible benefits of exploratory actions. The data are not consistent with this interpretation, however, as 

RT variability (as estimated by the coefficient of variation, which is the standard deviation normalized by 

mean RT (7, 8) did not correlate with anhedonia (p > 0.5).  We further computed a measure of trial-to-

trial variance as a measure of whether overall RT swings were smaller as a function of anhedonia. To this 

end, we computed consecutive RT variance:    
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where i is trial number and n is the total number of trials (7). This measure of consecutive RT variance 

also showed no correlation with anhedonia (r = 0.05, ns). Thus anhedonia was not associated with an 

overall reduction in RT swings; rather, RT swings were less likely to vary in the direction of relative 

uncertainty.  RT variability did not differ between patients and controls; however, patients had 

significantly lower consecutive variance scores, suggesting that patients have smaller RT swings than 

controls (p < 0.001). 

In addition, to determine whether any effects of schizophrenia and avolition/anhedonia on 

exploration were specific to uncertainty, we also included other alternative models found in prior work to 

account for other variance in RT swings, including a regression to the mean parameter and a lose-switch 

parameter (3): 

• Regression to the mean parameter  RTs are predicted to speed up after slow responses and 

slow down after fast responses, regardless of outcome:  

 

where  is the new RT prediction including the contributions of regression to the mean. 

• Lose-switch parameter κ. RT swings are predicted to occur after negative prediction errors, such that 

participants switch to a slower response if the previous response was fast and vice versa. The degree 

of adaptation was scaled by free parameter κ. 

 

If schizophrenia effects are specific to uncertainty-driven exploration, they would then be 

observed on parameter  but not  or κ. Two follow-up simulations confirmed a selective effect of 
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uncertainty. In these simulations, we included additional parameters that capture trial-by-trial RT swings 

but which are insensitive to uncertainty (regression to the mean parameter ξ and lose-switch parameter κ; 

see also 3)). In these models, the exploration parameter was still significantly lower in patients relative to 

controls (p = 0.01 and p = 0.03, respectively), with no effect on any other parameter, including ξ or κ. 

That these effects are specific to uncertainty is supported by an analysis in which we computed relative 

parameter estimates for exploration compared to κ or ξ (with each parameter converted to standardized z-

scores so that that they are on the same scale). Relative exploration scores indicate the extent to which RT 

swings are affected by uncertainty as compared to these other factors. In this analysis, relative exploration 

values were again significantly reduced in patients compared to controls (both p’s = 0.01). Moreover, 

anhedonia continued to significantly correlate with relative reductions in exploration (p’s < 0.01). Further, 

with either of these parameters included into the model (capturing additional variance), the αG parameter 

difference between patients and controls reached significance or near-significance (p = 0.057 and p = 

0.04), but still did not correlate with anhedonia. Additionally, κ and ξ were not significantly correlated 

with anhedonia (p’s > 0.39), suggesting that the correlation with anhedonia is unique to uncertainty-

driven exploration. 

 

 
Figure S4. Differences in exploration parameters between schizophrenia patients and controls. The figure 
depicts standardized z-scores for the uncertainty-driven exploration parameter ǫ and alternative models of 
trial-to-trial dynamics (regression to the mean, and lose-switch) demonstrate that SZ deficiencies are 
specific to uncertainty. Error bars reflect standard error. 
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