## **Supplemental Information**

## **Activity-Based Profiling**

# **Reveals Reactivity of the Murine**

## Thymoproteasome-Specific Subunit β5t

Bogdan I. Florea, Martijn D. Verdoes, Nan Li, Wouter A. van der Linden, Paul P. Geurink, Hans van den Elst, Tanja Hofmann, Arnoud de Ru, Peter A. van Veelen, Keiji Tanaka, Katsuhiro Sasaki, Shigeo Murata, Hans den Dulk, Jaap Brouwer, Ferry A. Ossendorp, Alexei F. Kisselev, and Herman S. Overkleeft

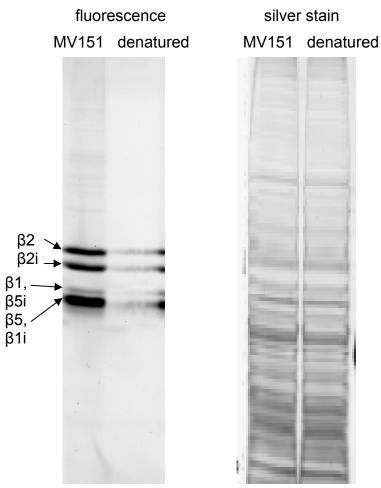



Figure S1, related to Figure 2A.

Fluorescence and silver stain detection of EL4 (murine thymoma cell line) cell lysate incubated with the fluorescent, broad-spectrum proteasome activity-based probe MV151. Some 20  $\mu$ g protein was incubated with 0.5  $\mu$ M MV151 for 60' at 37°C, resolved by 12.5% SDS-PAGE and imaged by fluorescence scanning followed by silver staining of the same gel. In the denatured lane, the lysate was deactivated by boiling with 1% SDS prior to the MV151 incubation.

Table S1, related to Figure 2B. Protein Identification of Silver Stained Bands Captured by Probe 3 in Figure 2B, by In-gel Digestion and LC-MS analysis

|       | mass              | cover                                                                               |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (Da)              | % AA                                                                                | Z                                                                                                       | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | peptide sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (β5t) | 27834             | 20                                                                                  | 2                                                                                                       | -0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SLEQELEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                   |                                                                                     | 2                                                                                                       | -0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESGWEYVSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                   |                                                                                     | 2                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LLGTTSGTSADCATWYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                   |                                                                                     | 3                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GYHYDMTIQEAYTLAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (β2)  | 25235             | 57                                                                                  | 2                                                                                                       | -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTTAVLTEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                   |                                                                                     | 2                                                                                                       | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DGIVLGADTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                   |                                                                                     | 3                                                                                                       | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FRPDMEEEEAK *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                   |                                                                                     | 2                                                                                                       | -0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LDFLRPFSVPNK *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |                   |                                                                                     | 3                                                                                                       | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LDFLRPFSVPNKK **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                   |                                                                                     | 2                                                                                                       | 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LPYVTMGSGSLAAMAVFEDK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                   |                                                                                     | 3                                                                                                       | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VTPLEIEVLEETVQTMDTS #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                   |                                                                                     | 4                                                                                                       | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IHFISPNIYCCGAGTAADTDMTTQLISSNLELHSLTTGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (β2i) | 24789             | 18                                                                                  | 2                                                                                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DGVILGADTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                   |                                                                                     | 2                                                                                                       | -0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALSTPTEPVQR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                   |                                                                                     | 2                                                                                                       | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EVRPLTLELLEETVQAMEVE #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (β1)  | 21982             | 48                                                                                  | 2                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QVLLGDQIPK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |                   |                                                                                     | 2                                                                                                       | -2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LAAIQESGVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                   |                                                                                     | 2                                                                                                       | -0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DECLQFTANALALAMER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |                   |                                                                                     | 2                                                                                                       | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QSFAIGGSGSSYIYGYVDATYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                   |                                                                                     | 4                                                                                                       | 4.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SGSAADTQAVADAVTYQLGFHSIELNEPPLVHTAASLFK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (β5i) | 22635             | 42                                                                                  | 2                                                                                                       | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATAGSYISSLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |                   |                                                                                     | 2                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FQHGVIVAVDSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                   |                                                                                     | 2                                                                                                       | -1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VESSDVSDLLYK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                   |                                                                                     | 2                                                                                                       | -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GPGLYYVDDNGTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                   |                                                                                     | 2                                                                                                       | -0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QDLSPEEAYDLGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                   |                                                                                     | 2                                                                                                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VIEINPYLLGTMSGCAADCQYWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (β5)  | 22514             | 13                                                                                  | 2                                                                                                       | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATAGAYIASQTVK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                   |                                                                                     | 2                                                                                                       | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GPGLYYVDSEGNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (β1i) | 21313             | 17                                                                                  | 2                                                                                                       | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FTTNAITLAMNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                   |                                                                                     | 2                                                                                                       | -0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DGSSGGVIYLVTITAAGVDHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | (β2i) (β2i) (β5i) | (β5t) (Da) (β2) 27834  (β2) 25235  (β2i) 24789  (β1) 21982  (β5i) 22635  (β5) 22514 | (β5t) 27834 % AA<br>(β2) 25235 57<br>(β2i) 24789 18<br>(β1) 21982 48<br>(β5i) 22635 42<br>(β5) 22514 13 | (β5t)       (Da)       % AA       z         (β5t)       27834       20       2         2       2         3       3         (β2)       25235       57       2         2       3         2       3         2       3         4       4         (β2i)       24789       18       2         2       2         (β1)       21982       48       2         2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2         2       2       2 | (β5t)       (Da)       % AA       z       ppm         (β5t)       27834       20       2       -0.29         2       -0.54       2       0.05         3       0.00         (β2)       25235       57       2       -1.20         2       0.39       3       0.14         2       -0.63       3       0.58         2       2.14       3       -0.19         4       5.34         (β2i)       24789       18       2       0.20         2       -0.42       2       -0.42         (β1)       21982       48       2       0.09         (β5i)       22635       42       2       0.71         2       -0.46       2       1.65         4       4.96         (β5i)       22635       42       2       0.71         2       -0.34       2       -0.35         2       -0.35       2       -0.34         2       -0.34       2       -0.28         (β5i)       22514       13       2       0.23         (β5i)       22514       13       2 | (β5t) 27834 20 2 -0.29 50 (β5t) 27834 20 2 -0.29 50 (β2) 25235 57 2 -0.54 39 (β2) 25235 57 2 -1.20 41 (β2) 25235 57 2 -0.63 45 (β3) 24789 18 2 0.20 25 (β1) 21982 48 2 0.20 25 (β5i) 22635 42 2 -0.42 44 (β5i) 22635 42 2 -0.46 132 (β5i) 22635 42 2 0.71 72 (β5i) 22635 42 2 0.95 72 (β5i) 22514 13 2 0.23 24 (β1i) 21313 17 2 0.67 79 |

**Table S1, related to Figure 2B.** Protein accession numbers, mass of the active  $\beta$  subunit, % coverage of the protein by amino acids identified by LC-MS, charge of the peptide (z), measurement error (ppm), Mascot peptide scores, one (\*) or two (\*\*) miss cleavages, and C-terminal peptides (#). Mascot identifications were manually validated.

Table S2, related to Figure 2B. Protein identification after affinity purification with probe 3, on-bead digestion with trypsin and LC-MS analysis

|             |       | mass  | cover |   |       | pept  |                   |
|-------------|-------|-------|-------|---|-------|-------|-------------------|
| prot acc    |       | (Da)  | % AA  | Z | ppm   | score | peptide sequence  |
| Psmb11      | (β5t) | 27834 | 34    | 2 | -0.89 | 47    | HGVIAAADTR        |
| IPI00221461 |       |       |       | 2 | 1.30  | 21    | EGQLPSVAGTAK      |
|             |       |       |       | 2 | 0.41  | 76    | LLAAMMSCYR        |
|             |       |       |       | 2 | -2.14 | 93    | SSCGSYVACPASR     |
|             |       |       |       | 2 | 0.76  | 71    | ACGIYPEPATPQGAR   |
|             |       |       |       | 2 | 1.67  | 130   | LLGTTSGTSADCATWYR |

|             |       |       |    | 2 | 1.89  | 99  | ELFVEQEEVTPEDCAIIMK                          |
|-------------|-------|-------|----|---|-------|-----|----------------------------------------------|
| Psmb7       | (β2)  | 25235 | 50 | 2 | 0.43  | 27  | QMLFR                                        |
| IPI00136483 |       |       |    | 2 | 1.09  | 70  | FRPDMEEEEAK                                  |
|             |       |       |    | 2 | 3.42  | 55  | LDFLRPFSVPNK                                 |
|             |       |       |    | 2 | -0.80 | 57  | FRPDMEEEEAKK *                               |
|             |       |       |    | 3 | 0.13  | 45  | LDFLRPFSVPNKK *                              |
|             |       |       |    | 3 | 2.19  | 38  | SKLDFLRPFSVPNK *                             |
|             |       |       |    | 2 | -4.89 | 62  | LPYVTMGSGSLAAMAVFEDK                         |
|             |       |       |    | 2 | -1.17 | 111 | VTPLEIEVLEETVQTMDTS #                        |
|             |       |       |    | 2 | -0.11 | 129 | LVSEAIAAGIFNDLGSGSNIDLCVISK                  |
|             |       |       |    | 3 | 3.18  | 57  | KLVSEAIAAGIFNDLGSGSNIDLCVISK *               |
|             |       |       |    | 3 | 0.28  | 173 | IHFISPNIYCCGAGTAADTDMTTQLISSNLELHSLTTGR      |
| Psmb10      | (β2i) | 24789 | 65 | 2 | -0.29 | 61  | ATNDSVVADK                                   |
| IPI00316736 |       |       |    | 2 | 0.00  | 40  | MELHALSTGR                                   |
|             |       |       |    | 2 | -0.60 | 39  | FAPGTTPVLTR                                  |
|             |       |       |    | 2 | -1.12 | 121 | IYCCGAGVAADTEMTTR                            |
|             |       |       |    | 2 | 0.35  | 167 | LPFTALGSGQGAAVALLEDR                         |
|             |       |       |    | 2 | 0.73  | 93  | EVRPLTLELLEETVQAMEVE #                       |
|             |       |       |    | 4 | 0.77  | 53  | YQGHVGASLVVGGVDLNGPQLYEVHPHGSYSR             |
| Psmb6       | (β1)  | 21982 | 74 | 2 | 0.35  | 58  | DGSSGGVIR                                    |
| IPI00119239 | ,     |       |    | 2 | -0.21 | 50  | FTIATLPPP #                                  |
|             |       |       |    | 2 | 0.55  | 78  | TTTGSYIANR                                   |
|             |       |       |    | 2 | 1.28  | 91  | LAAIQESGVER                                  |
|             |       |       |    | 2 | -1.59 | 55  | LTPIHDHIFCCR                                 |
|             |       |       |    | 2 | 1.59  | 132 | DECLQFTANALALAMER                            |
|             |       |       |    | 2 | 1.27  | 129 | QSFAIGGSGSSYIYGYVDATYR                       |
|             |       |       |    | 3 | 1.68  | 32  | EGMTKDECLQFTANALALAMER *                     |
|             |       |       |    | 3 | 1.68  | 106 | YREDLMAGIIIAGWDPQEGGQVYSVPMGGMMVR *          |
|             |       |       |    | 3 | 4.81  | 149 | SGSAADTQAVADAVTYQLGFHSIELNEPPLVHTAASLFK      |
| Psmb8       | (β5i) | 22635 | 55 | 2 | -0.27 | 92  | ATAGSYISSLR                                  |
| IPI00116712 | ,     |       |    | 2 | 2.60  | 66  | LLSNMMLQYR                                   |
|             |       |       |    | 2 | -0.68 | 72  | FQHGVIVAVDSR                                 |
|             |       |       |    | 2 | -0.74 | 84  | VESSDVSDLLYK                                 |
|             |       |       |    | 2 | 0.56  | 80  | GPGLYYVDDNGTR                                |
|             |       |       |    | 2 | 1.18  | 75  | DNYSGGVVNMYHMK                               |
|             |       |       |    | 2 | 1.35  | 99  | GMGLSMGSMICGWDK                              |
|             |       |       |    | 2 | -0.75 | 121 | LSGQMFSTGSGNTYAYGVMDSGYR                     |
|             |       |       |    | 3 | 0.81  | 60  | VIEINPYLLGTMSGCAADCQYWER                     |
| Psmb5       | (β5)  | 22514 | 18 | 2 | 0.38  | 47  | VEEAYDLAR                                    |
| IPI00317902 | .,    |       |    | 2 | 0.91  | 56  | GPGLYYVDSEGNR                                |
| Psmb9       | (β1i) | 21313 | 58 | 2 | 0.21  | 56  | VSAGTAVVNR                                   |
| IPI00309379 | (1 /  |       |    | 2 | -0.71 | 61  | VILGDELPK                                    |
|             |       |       |    | 2 | -0.07 | 91  | FTTNAITLAMNR                                 |
|             |       |       |    | 2 | 0.05  | 96  | DGSSGGVIYLVTITAAGVDHR                        |
|             |       |       |    | 3 | -0.15 | 99  | QPFTIGGSGSSYIYGYVDAAYKPGMTPEECR              |
|             |       |       |    | 3 | -1.11 | 122 | IFCALSGSAADAQAIADMAAYQLELHGLELEEPPLVLAAANVVK |
|             |       |       |    | - |       |     |                                              |

# Table S2, related to Figure 2B.

Protein name, mass of the active  $\beta$  subunit, % coverage of the protein by amino acids identified by LC-MS, charge of the peptide (z), measurement error (ppm), Mascot peptide scores, miss cleavage (\*), and C-terminal peptides (#). Mascot identifications were manually validated.

Table S3, related to Figure 3C. Calculated exact (m/z) masses of the active-site peptides bound to biotin-epoxomicin (probe 3)

|     |                     | Exact              | mass       | Z=         | =2         | <i>z</i> =3 |           |
|-----|---------------------|--------------------|------------|------------|------------|-------------|-----------|
|     | $y_7$ ion sequence  | mono-iso High-peak |            | mono-iso   | High-peak  | mono-iso    | High-peak |
| β1  | TTIMAVQFNGGVVLGADSR | 2659.40773         | 2660.41061 | 1330.71114 | 1331.21258 | 887.47652   | 887.81081 |
| β1i | TTIMAVEFDGGVVVGSDSR | 2663.35502         | 2664.35793 | 1332.68479 | 1333.18624 | 888.79228   | 889.12659 |
| β2  | TTIAGVVYK           | 1674.96302         | 1674.96302 | 838.48878  | 838.48878  | 559.32828   | 559.32828 |
| β2i | TTIAGLVFR           | 1700.98990         | 1700.98990 | 851.50223  | 851.50223  | 568.00391   | 568.00391 |
| β5  | TTTLAFK             | 1504.85749         | 1504.85749 | 753.43602  | 753.43602  | 502.64644   | 502.64644 |
| β5i | TTTLAFK             | 1504.85749         | 1504.85749 | 753.43602  | 753.43602  | 502.64644   | 502.64644 |
| β5t | TTTLAFR             | 1532.86364         | 1532.86364 | 767.43909  | 767.43909  | 511.96182   | 511.96182 |

## Table S3, related to Figure 3C.

The mono-isotopic mass (mono-iso) and the mass of the most abundant isotope peak (High-peak) are shown at charge (z) of 0, 2, and 3. The active site peptide sequence of  $\beta$ 5 and  $\beta$ 5 is identical.

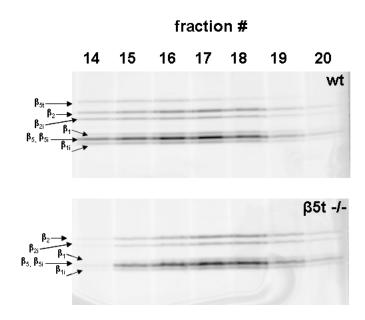



Figure S2.

Lysates from wild type and  $\beta5t$  -/- thymi from 3 weeks old mice were fractionated on 10-40% sucrose gradients by ultra-centrifugation. The (thymo)proteasome activity was assayed by ABP profiling with probe **4**.

Figure S3.

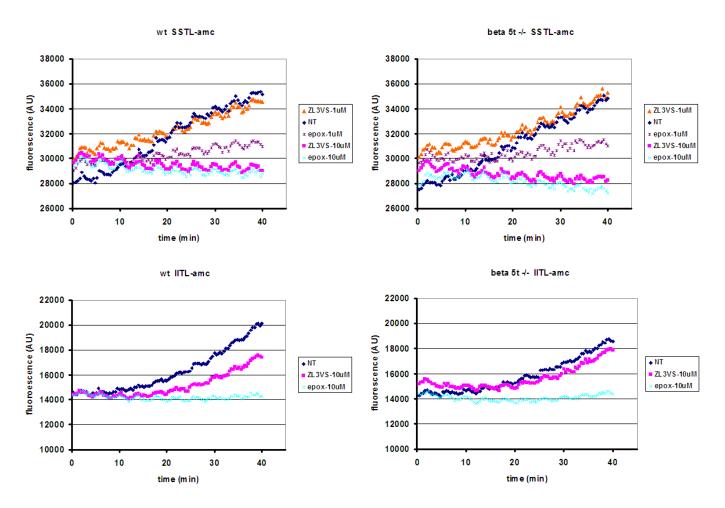



Figure S3. Fluorogenic assay of enriched wt and  $\beta$ 5t -/- thymoproteasomes using the Ac-SSTL-amc and Ac-IITL-amc substrates in combination with inhibition with 1, 10  $\mu$ M ZL<sub>3</sub>VS or epoxomicin.

#### SUPPLEMENTAL EXPERIMENTAL PROCEDURES

## Synthesis of the Activity-Based Probes 2, 3 and 4

## Fmoc-lle-Thr(tBu)-OMe

L-threonine(*t*Bu) methyl ester HCl salt (2.5 g, 11 mmol) was dissolved in DCM (60 mL). To this solution were added Fmoc-L-isoleucine (4.7 g, 13.3 mmol, 1.2 equiv.), HCTU (5.5 g, 13.3 mmol, 1.2 equiv.) and DiPEA (6.0 mL, 36 mmol, 3.3 equiv.). The mixture was stirred for 2 hours after which TLC analysis indicated a completed reaction. The mixture was concentrated *in vacuo*, dissolved in EtOAc

and extracted with 1 M HCl (2×), saturated NaHCO $_3$  (2×) and brine. The organic layer was dried (MgSO $_4$ ) and concentrated under reduced pressure. Purification of the product by column chromatography (10%  $\rightarrow$  15% EtOAc/petroleum ether) gave the title compound as a colorless solid (yield: 5.16 g, 9.83 mmol, 89%). <sup>1</sup>H NMR (400 MHz, CDCl $_3$ )  $\delta$  = 7.76 (d, J = 7.48 Hz, 2H), 7.60 (d, J = 7.41 Hz, 2H), 7.39 (t, J = 7.46, 7.46 Hz, 2H), 7.31 (dt, J = 7.43, 7.43, 0.98 Hz, 2H), 6.48 (d, J = 8.84 Hz, 1H), 5.58 (d, J = 8.70 Hz, 1H), 4.49 (dd, J = 9.00, 1.68 Hz, 1H), 4.44-4.33 (m, 2H), 4.28-4.15 (m, 3H), 3.71 (s, 3H), 1.94-1.83 (m, 1H), 1.65-1.53 (m, 1H), 1.33-1.21 (m, 1H), 1.17 (d, J = 6.27 Hz, 3H), 1.11 (s, 9H), 1.03-0.93 (m, 6H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl $_3$ )  $\delta$  = 171.426, 170.868, 156.074, 143.910, 143.784, 141.249, 127.635, 127.017, 125.077, 119.904, 74.215, 67.193, 66.969, 59.307, 57.832, 52.135, 47.173, 38.179, 28.272, 24.820, 21.046, 15.085, 11.521 ppm.

#### Boc-lle-lle-Thr(tBu)-NHNH<sub>2</sub>

Fmoc-lle-Thr(tBu)-OMe (5.16 g, 9.83 mmol) was dissolved in DMF (50 mL) and DBU (1.57 mL, 10.3 mmol, 1.05 equiv.) was added. The reaction was stirred for 5 minutes after which TLC analysis showed complete removal of the Fmoc group. Next, HOBt (1.98 g, 14.7 mmol, 1.5 equiv.) was added and the reaction mixture was stirred for another 30 minutes. To this mixture were added Boc-L-isoleucine (2.73 g, 11.8 mmol, 1.2 equiv.), HCTU (4.88 g, 11.8 mmol, 1.2 equiv.) and DiPEA (4.87 mL, 29.5 mmol, 3 equiv.). The mixture was stirred for 16 hours after which TLC analysis indicated a completed reaction. The mixture was concentrated in vacuo, dissolved in DCM and extracted with 1 M HCl (2x), saturated NaHCO<sub>3</sub> (2×) and brine. The organic layer was dried (MgSO<sub>4</sub>) and concentrated under reduced pressure. Purification of the product by column chromatography (10%  $\rightarrow$ 50% EtOAc/petroleum ether) gave Boc-Ile-Ile-Thr(tBu)-OMe as a colorless solid (yield: 3.69 g, 7.15 mmol, 73%). LC-MS: gradient  $10\% \rightarrow 90\%$  ACN/(0.1%) TFA/H<sub>2</sub>O): R<sub>t</sub> (min): 9.88 (ESI-MS (m/z): 516.13 (M + H<sup> $\dagger$ </sup>)). The obtained product was dissolved in MeOH (50 mL) and hydrazine hydrate (10.4 mL, 214.5 mmol, 30 equiv.) was added. The reaction mixture was refluxed for 16 hours after which TLC analysis indicated complete conversion. Toluene was added and the mixture was concentrated under reduced pressure. Traces of hydrazine were removed by co-evaporating the mixture with toluene  $(3 \times)$  and the title compound was obtained as a colorless solid (yield: 6.67 g, 7.15 mmol, quant.). <sup>1</sup>H NMR (400 MHz, MeOD)  $\delta$  = 4.36 (d, J = 3.53 Hz, 1H), 4.32 (d, J = 8.12 Hz, 1H), 4.07-4.00 (m, 1H), 3.94 (d, J = 7.90 Hz, 1H), 1.93-1.84 (m, 1H), 1.83-1.73 (m, 1H), 1.61-1.041.50 (m, 2H), 1.44 (s, 9H), 1.19 (s, 9H), 1.19-1.16 (m, 2H), 1.10 (d, J = 6.32 Hz, 3H), 0.94-0.87 (m, 12H) ppm,  $^{13}$ C NMR (100 MHz, MeOD)  $\delta$  = 174.839, 173.393. 171.301, 157.910, 80.568, 75.849, 68.522, 60.624, 59.227, 58.566, 37.949, 37.852, 28.772, 28.668, 25.941, 19.781, 16.231, 15.951, 11.392, 11.325 ppm. LC-MS: gradient  $10\% \rightarrow 90\%$  ACN/(0.1% TFA/H<sub>2</sub>O): R<sub>t</sub> (min): 6.08 (ESI-MS (m/z): 516.4  $(M + H^{+})$ ).

## Boc-lle-lle-Thr(tBu)-leucinyl-(R)-2-methyloxirane

Boc-Ile-Ile-Thr(tBu)-NHNH $_2$  (2.0 g, 3.87 mmol) was dissolved in DCM (40 mL) and cooled to -30°C under an argon atmosphere. tBuONO (566  $\mu$ L, 4.25 mmol, 1.1 equiv.) and HCl (2.8 equiv., 10.8 mmol, 2.7 mL of a 4  $\mu$  solution in 1,4-dioxane) were added and the mixture was stirred at -30 °C for 3 hours. (Boc-leucinyl)-(tR)-2-methyloxirane (1.16 g, 4.25 mmol, 1.1 equiv.) was deprotected

with DCM/TFA (1:1 v/v. 20 mL) for 30 minutes followed by co-evaporation with toluene (3×). The resulting TFA salt was dissolved in DMF (5 mL) and added to the former reaction mixture together with DiPEA (3.31 mL, 20 mmol, 5 equiv.). The reaction mixture was slowly warmed to ambient temperature and stirred for 16 hours. Next, the mixture was extracted with 1 M HCl ( $2\times$ ), H<sub>2</sub>O and brine, dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The title compound was obtained after column chromatography (20% → 50% EtOAc/petroleum ether) as a colorless solid (yield: 2.25 g, 3.43 mmol, 89%). 1H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.64 (d, J = 7.47 Hz, 1H), 6.99 (d, J = 5.64 Hz, 1H), 6.45 (d, J = 8.20 Hz, 1H), 5.22 (d, J =7.85 Hz, 1H), 4.46 (ddd, J = 10.45, 7.55, 2.94 Hz, 1H), 4.40-4.32 (m, 2H), 4.14-4.07 (m, 1H), 3.94 (t, J = 7.34, 7.34 Hz, 1H), 3.38 (d, J = 5.07 Hz, 1H), 2.89 (d, J= 5.06 Hz, 1H), 1.93-1.77 (m, 2H), 1.74-1.64 (m, 1H), 1.60-1.55 (m, 1H), 1.52 (s, 3H), 1.51-1.46 (m, 2H), 1.44 (s, 9H), 1.28 (s, 9H), 1.27-1.24 (m, 1H), 1.17-1.08 (m, 2H), 1.06 (d, J = 6.44 Hz, 3H), 0.96 (d, J = 6.54 Hz, 6H), 0.92-0.86 (m, 12H)ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 208.062, 171.593, 170.738, 169.515, 155.807, 79.761, 75.492, 66.143, 59.249, 57.686, 56.956, 52.395, 50.746, 39.809, 37.300, 36.971, 28.280, 28.082, 25.423, 24.879, 24.695, 23.358, 21.359, 16.754, 15.532, 15.405, 11.285 ppm. LC-MS: gradient  $10\% \rightarrow 90\%$  ACN/(0.1%) TFA/H2O):  $R_t$  (min): 11.31 (ESI-MS (m/z): 655.27 (M + H<sup>+</sup>)).

## Biotin-epoxomicin (3)

Boc-Ile-Ile-Thr(tBu)-leucinyl-(R)-2-methyloxirane (13.2 mg, 20.2 μmol) was dissolved in 2 mL DCM. TFA (2 mL) was added and the mixture was stirred for 20 min. The reaction mixture was co-evaporated with toluene (3×). The residue was dissolved in 1 mL DMF. Biotin-OSu (7 mg, 21 μmol, 1.01 equiv.) and DiPEA (8.3 μL, 50 μmol, 2.5 equiv.) were added and the mixture was stirred for 2 hr. The volatiles were removed *in vacuo* and the title compound was obtained after HPLC purification (yield: 5 mg, 6.9 μmol, 34%). <sup>1</sup>H NMR (400 MHz, MeOD) δ = 4.55 (dd, J = 10.63, 3.03 Hz, 1H), 4.48 (dd, J = 7.72, 4.85 Hz, 1H), 4.32-4.20 (m, 4H), 4.06-3.99 (m, 2H), 3.25 (d, J = 5.07 Hz, 1H), 3.23-3.16 (m, 1H), 2.95-2.89 (m, 2H), 2.69 (d, J = 12.71 Hz, 1H), 2.33-2.20 (m, 2H), 1.90-1.77 (m, 2H), 1.78-1.30 (m, 13H), 1.24-1.11 (m, 5H), 0.95-0.86 (m, 18H) ppm. LC-MS: gradient 10%  $\rightarrow$  90% ACN/(0.1% TFA/H<sub>2</sub>O): R<sub>t</sub> (min): 6.30 (ESI-MS (m/z): 725.7 (M + H<sup>+</sup>)).

## Azido-BODIPY(Tmr)-epoxomicin

Boc-Ile-Ile-Thr(*t*Bu)-leucinyl-(*R*)-2-methyloxirane (7.9 mg, 12 μmol) was dissolved in TFA (1 mL) and stirred for 30 min., before being coevaporated with toluene (3×). The residue was dissolved in DMF (2 mL) and azido-BODIPY-OSu (6.6 mg, 12 μmol, 1 equiv.) and DiPEA (8 μL, 48 μmol, 4 equiv.) were added and the reaction mixture was stirred for 12 hr. Concentration *in vacuo*, followed by purification by column chromatography (DCM  $\rightarrow$  2% MeOH/DCM) yielded the title compound as a brown/red solid (yield: 5.4 mg, 5.7 μmol, 47%). <sup>1</sup>H NMR (600 MHz, MeOD) δ = 7.88 (d, J = 8.7 Hz, 2H), 7.41 (s, 1H), 7.06 (d, J = 3.9 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.60 (d, J = 3.9 Hz, 1H), 4.55 (dd, J<sub>1</sub> = 10.7, J<sub>2</sub> = 2.8 Hz, 1H), 4.30 (d, J = 5.0 Hz, 1H), 4.22 (d, J = 7.8 Hz, 1H), 4.15-4.12 (m, 3H), 4.02 (p, J = 6.1 Hz, 1H), 3.54 (t, J = 6.7 Hz, 2H), 3.25 (d, J = 5.1 Hz, 1H), 2.92 (d, J = 5.1 Hz, 1H), 2.81 (m, 1H), 2.71 (m, 1H), 2.51 (s, 3H), 2.45-2.40 (m, 2H), 2.25 (s, 3H), 2.07 (p, J = 6.3 Hz, 2H), 1.89-1.79 (m, 1H), 1.75-1.66 (m, 2H), 1.65-1.52 (m, 2H), 1.53-1.41 (m, 5H), 1.41-1.21 (m, 15H), 1.20-1.06 (m, 5H), 1.05-0.97 (m, 1H), 0.97-0.85 (m, 16H), 0.82 (d, J = 6.7 Hz, 3H), 0.76 (t, J = 7.4 Hz, 3H) ppm. <sup>13</sup>C

NMR (150 MHz, MeOD)  $\delta$  = 209.51, 174.86, 174.06, 173.59, 172.23, 161.03, 160.67, 156.57, 141.79, 136.67, 135.83, 132.45, 131.92, 131.89, 131.86, 131.67, 131.65, 129.91, 129.28, 127.16, 124.70, 119.10, 115.27, 115.19, 69.14, 68.55, 65.98, 60.13, 59.82, 59.42, 59.41, 53.10, 51.84, 40.38, 38.02, 37.71, 36.45, 30.82, 29.90, 26.26, 26.03, 23.81, 21.52, 21.21, 20.02, 17.05, 15.92, 15.86, 11.47, 11.22, 9.67 ppm.

## **Biotin-BODIPY(Tmr)-epoxomicin (2)**

Azido-BODIPY(Tmr)-epoxomicin (4.1 mg, 4.3 μmol) and Biotin-propargylamide (2.4 mg, 8.6 μmol, 2 equiv.) were dissolved in tBuOH (0.25 mL) and toluene (0.25 mL) before CuSO<sub>4</sub> (125 μL 3.4 mm, 10 mol%) and sodium ascorbate (125 μL 6.9 mm, 20 mol%) were added. The reaction mixture was stirred at 80 °C for 12 hr., before being cooled to room temperature and concentrated in vacuo. by column chromatography (petroleum ether acetone/petroleum ether) yielded the title compound as a brown/red solid (4.5 mg, 3.7  $\mu$ mol, 85%).  $\lambda_{max}$  (MeOH): 544.43 nm,  $\epsilon$ : 60400 I mol<sup>-1</sup>cm<sup>-1</sup>. <sup>1</sup>H NMR (600) MHz, MeOD)  $\delta$  = 7.95-7.78 (m, 3H), 7.42 (s, 1H), 7.07 (d, J = 4.1 Hz, 1H), 6.95 (d. J = 8.9 Hz. 2H), 6.61 (d. J = 4.1 Hz. 1H), 4.70-4.52 (m. 5H), 4.46-4.39 (m. 2H), 4.34-4.26 (m, 1H), 4.25-4.19 (m, 1H), 4.17-4.11 (m, 1H), 4.08-3.99 (m, 3H), 3.95 (t, J = 2.2 Hz, 1H), 3.25 (d, J = 5.0 Hz, 1H), 3.16-3.10 (m, 1H), 2.92 (d, J =5.1 Hz, 1H), 2.71-2.64 (m, 2H), 2.60-2.56 (m, 1H), 2.51 (s, 3H), 2.46-2.37 (m, 4H), 2.26 (s, 3H), 2.24-2.17 (m, 2H), 1.95-1.21 (m, 32H), 1.21-1.10 (m, 5H), 1.06-0.85 (m, 17H), 0.82 (d, J = 6.8 Hz, 3H), 0.76 (t, J = 7.3 Hz, 3H) ppm. ESI-MS (m/z): 1229.64  $(M + H^{+})$ .

## **BODIPY(Tmr)-epoxomicin (4)**

Boc-lle-lle-Thr(tBu)-leucinyl-(R)-2-methyloxirane (65 mg, 100 µmol) was dissolved in 2 mL TFA and the solution was stirred for 1 hr. before being coevaporated with toluene (3x). The residue was dissolved in DCM:DMF (1/1, v/v, 10 mL) and DiPEA was added (300 µmol, 50 µL, 3 equiv.) followed by BODIPY(Tmr)-OSu (50 mg, 100 µmol, 1 equiv.) and the reaction mixture was stirred for 12 hr. The solution was concentrated and aplied to column chromatography (0-2% MeOH:DCM, then 0-2% EtOH:DCM, 2x) to yield the title compound as a purple solid (17 mg, 19 µmol, 19%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.71-8.57 (m, 1H), 8.17-7.91 (m, 2H), 7.87 (d, J = 8.81 Hz, 2H), 7.53-7.37 (m, 1H), 6.98 (d, J = 8.88 Hz, 2H), 6.84 (s, 1H), 6.74 (d, J = 3.76 Hz, 1H), 6.40 (d, J =3.94 Hz, 1H), 4.86-4.68 (m, 3H), 4.63-4.56 (m, 1H), 4.09-3.99 (m, 1H), 3.86 (s, 3H), 3.26 (d, J = 4.46 Hz, 1H), 2.88 (d, J = 4.62 Hz, 1H), 2.73-2.56 (m, 1H), 2.56-2.31 (m, 6H), 2.01 (s, 3H), 1.87-1.73 (m, 99H), 1.51 (s, 3H), 1.09 (d, J = 6.12 Hz, 3H). 0.92-0.73 (m. 21H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  = 208.16, 172.24, 171.91, 171.74, 170.71, 160.28, 158.28, 155.25, 139.29, 135.04, 134.05, 130.59, 130.15, 128.08, 125.52, 122.75, 118.10, 113.70, 67.32, 59.13, 57.49, 57.24, 56.92, 55.24, 52.35, 50.74, 39.36, 38.24, 37.55, 35.69, 29.68, 25.32, 25.28, 25.05, 23.23, 22.67, 21.25, 19.79, 17.42, 16.83, 15.30, 15.16, 14.11, 12.95, 11.48, 11.44, 9.34. LC-MS: gradient  $10\% \rightarrow 90\%$  ACN/(0.1% TFA/H<sub>2</sub>O): R<sub>t</sub> (min): 10.21 (ESI-MS (m/z): 879.00 (M +  $H^{+}$ )).

#### Synthesis of the fluorogenic substrates

#### Boc-Leu-AMC

Boc-Leu-OH  $_{2}$ O (0.62 mmol, 155 mg, 1.1 equiv.) was coevaporated with toluene (2x) and dissolved in DMF. HATU (0.67 mmol, 255 mg, 1.2 equiv.) and 2,4,6-trimethylpyridine (0.67 mmol, 90 μL, 1.2 equiv.) were added and the mixture was stirred for 5 min. AMC (0.56 mmol, 100 mg, 1 equiv.) was added and the mixture was stirred for 5 days. The mixture was concentrated, dissolved in DCM and extracted with 1M HCl (2x), sat. aq. NaHCO<sub>3</sub> (2x) and brine before drying over Na<sub>2</sub>SO<sub>4</sub>. Column chromatography (20% EA:PE  $\rightarrow$  50% EA:PE) yielded the title compound (0.51 mmol, 200 mg, 92%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 9.70 (s, 1H), 7.80 (s, 1H), 7.35 (d, J = 8.55 Hz, 1H), 6.99 (d, J = 8.17 Hz, 1H), 6.06 (s, 1H), 5.59 (d, J = 7.82 Hz, 1H), 4.53-4.42 (m, 1H), 2.34 (s, 3H), 1.89-1.58 (m, 3H), 1.50 (s, 9H), 1.01-0.92 (m, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 172.28, 160.95, 156.69, 153.58, 152.43, 141.36, 124.53, 115.20, 115.09, 112.74, 106.88, 80.51, 54.04, 40.72, 28.31, 28.18, 24.62, 23.06, 21.13, 18.26.

#### Fmoc-Ser(tBu)-Thr(tu)OMe

HCl·H-Thr(tBu)OMe (1 mmol, 383 mg, 1 equiv.), FmocSer(tBu)OH (1.05 mmol, 237 mg, 1.05 equiv.) and HBTU (1.2 mmol, 455 mg, 1.2 equiv.) were dissolved in DCM (10 mL) and DiPEA (3.5 mmol, 578 μL, 3.5 equiv.) was added and the mixture was stirred for 1h. The mixture was concentrated, dissolved in EA and washed with 1M HCl (2x), sat. aq. NaHCO<sub>3</sub> (4x) and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated to yield the title compound (560 mg, 1 mmol, quant) which was used without further purification.  $^1$ H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.74 (d, J = 7.50 Hz, 2H), 7.65-7.58 (m, 3H), 7.38 (t, J = 7.44, Hz, 2H), 7.30 (dt, J = 7.44, 1.00 Hz, 2H), 5.92 (d, J = 5.73 Hz, 1H), 4.54 (d, J = 9.07 Hz, 1H), 4.40-4.34 (m, 3H), 4.29-4.19 (m, 2H), 3.83 (dd, J = 8.21, 3.80 Hz, 1H), 3.70 (s, 3H), 3.47 (t, J = 8.56, 1H), 1.29-1.24 (m, 9H), 1.18 (d, J = 6.25 Hz, 3H), 1.12-1.11 (m, 9H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 170.91, 170.66, 155.85, 143.79, 143.62, 141.10, 127.53, 126.90, 125.03, 119.80, 74.14, 73.97, 67.22, 66.94, 61.69, 58.13, 53.91, 51.90, 46.98, 28.27, 27.24, 20.66.

### Fmoc-(Ser(tBu))<sub>2</sub>-Thr(tBu)OMe

Fmoc-Ser(tBu)Thr(tu)OMe (1 mmol) was dissolved in DMF (10 mL). DBU (1 mmol, 152 μmol, 150 μL) was added and the mixture was stirred for 5 min before HOBt (2 mmol, 270 mg, 2 equiv.) was added, After 5 min of stirring, Fmoc-Ser(tBu)OH (1.05 mmol, 403 mg, 1.05 equiv.), HBTU (1.20 mmol, 455 mg, 1.2 equiv.) and DiPEA (4.5 mmol, 743 μL, 4.5 equiv.) were added and the mixture was stirred for 1 hr before being concentrated. The residue was taken up in DCM and washed with 1M HCl (2x), sat. aq. NaHCO₃ (4x) and brine, dried over Na₂SO₄ and concentrated. Column chromatography (10% EA/tol → 25% EA/tol) yielded the title compound (548 mg, 785 μmol, 79%). <sup>1</sup>H NMR (400 MHz, CDCl₃) δ ppm 7.77-7.67 (m, 2H), 7.63-7.57 (m, 1H), 7.43 (d, J = 9.18 Hz, 1H), 7.37 (t, J = 7.45 Hz, 2H), 7.29 (t, J = 7.42 Hz, 2H), 7.25-7.19 (m, 2H), 5.90 (d, J = 6.24 Hz, 1H), 4.60-4.50 (m, 2H), 4.43-4.26 (m, 3H), 4.24-4.18 (m, 2H), 3.84 (m, 2H), 3.44 (m 2H), 3.67 (s, 3H), 1.27-1.24 (m, 9H), 1.25-1.22 (m, 9H), 1.15 (d, J = 5.82 Hz, 3H), 1.10 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl₃) δ ppm 170.60, 170.43, 170.05, 155.78, 143.72, 143.53, 141.03, 127.46, 126.84, 124.96, 119.72, 74.13, 73.97,

73.83, 67.25, 66.91, 61.70, 61.05, 57.95, 54.35, 53.11, 51.76, 46.90, 28.21, 27.19, 20.44.

### Ac-(Ser(tBu))<sub>2</sub>-Thr(tBu)OMe

Fmoc-(Ser(tBu))<sub>2</sub>Thr(tBu)OMe (548 mg, 785 μmol) was dissolved in DMF (10 mL). DBU (785 μmol, 117 μL, 1 equiv.) was added and the mixture was stirred for 5 min before HOBt (1.18 mmol, 159 mg, 1.5 equiv.) was added. The mixture was stirred for 5 min and Ac<sub>2</sub>O (1.18 mmol, 111 μL, 1.5 equiv.) and DiPEA (1.96 mmol, 324 μL, 2.5 equiv.) were added and the mixture was stirred for 30 min before being concentrated. The residue was taken up in DCM and washed with 1M HCl (2x), sat. aq. NaHCO<sub>3</sub> (2x) and dried over Na<sub>2</sub>SO<sub>4</sub>. Column chromatography (20% EA/tol  $\rightarrow$ EA and 50% EA/tol  $\rightarrow$ tol) yielded the title compound (isolated yield 226 mg, 437 μmol, 56%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.64 (d, J = 6.31 Hz, 1H), 7.39 (d, J = 9.33 Hz, 1H), 6.53 (d, J = 6.40 Hz, 1H), 4.57-4.44 (m, 3H), 4.24 (dq, J = 6.15, 2.00 Hz, 1H), 3.86-3.78 (m, 2H), 3.70 (s, 3H), 3.44-3.35 (m, 2H), 2.04 (s, 3H), 1.27-1.24 (m, 9H), 1.23 (s, 9H), 1.16 (d, J = 6.25 Hz, 3H), 1.12 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 170.79, 170.55, 170.37, 169.93, 74.35, 74.13, 74.02, 67.43, 61.40, 61.18, 58.08, 53.28, 53.07, 51.96, 28.39, 27.34, 23.19, 20.59.

#### Ac-(Ser(tBu))<sub>2</sub>-Thr(tBu)NHNH<sub>2</sub>

Ac-(Ser(tBu))<sub>2</sub>Thr(tBu)OMe (126 μmol, 65 mg) was dissolved in MeOH (5 mL) and hydrazine monohydrate was added (7.6 mmol, 0.4 mL, 60 equiv.) and the mixture was refluxed for 24h. More hydrazine (1.9 mmol, 0.1 mL, 15 equiv.) was added and the mixture was refluxed for 16 h. The mixture was coevaporated with toluene (3x) and used without further purification. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>OD) δ ppm 4.53-4.42 (m, 2H), 4.32-4.27 (m, 1H), 4.21-4.15 (m, 1H), 3.78 (dd, J = 9.18, 4.07 Hz, 1H), 3.68-3.60 (m, 2H), 3.58-3.50 (m, 1H), 2.02 (s, 3H), 1.23 (s, 9H), 1.22 (s, 9H), 1.17 (s, 9H), 1.19 (d, J = 1.71 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>OD) δ ppm 173.40, 172.75, 172.30, 171.36, 75.63, 75.44, 75.11, 68.01, 62.65, 59.43, 55.35, 55.29, 28.72, 27.76, 27.73, 22.50, 20.47.

#### Fmoc-lle-Thr(tBu)OMe

HCl·H-Thr(tBu)OMe (2 mmol, 707 mg, 1 equiv.), Fmoc-lle-OH (2 mmol, 451 mg, 1 equiv.) and HBTU (2.4 mmol, 910 mg, 1.2 equiv.) were dissolved in DCM (40 mL). DiPEA (7 mmol, 1.16 mL, 3.5 equiv.) was added and the mixture was stirred for 90 min. The mixture was concentrated, dissolved in EA and washed with 1M HCl (2x), sat. aq. NaHCO<sub>3</sub> (4x) and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. Column chromatography (10% EA/tol  $\rightarrow$  25% EA/tol) yielded the title compound (1.05 g, 2 mmol, quant) which was used without further purification. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.76 (d, J = 7.46 Hz, 2H), 7.60 (d, J = 7.43 Hz, 2H), 7.39 (t, J = 7.45 Hz, 2H), 7.30 (dt, J = 7.44, 0.95 Hz, 2H), 6.44 (d, J = 8.89 Hz, 1H), 5.57 (d, J = 8.70 Hz, 1H), 4.49 (dd, J = 8.99, 1.67 Hz, 1H), 4.45-4.32 (m, 2H), 4.27-4.16 (m, 3H), 3.70 (s, 3H), 1.95-1.83 (m, 1H), 1.65-1.54 (m, 1H), 1.36-1.20 (m, 1H), 1.17 (d, J = 6.27 Hz, 3H), 1.11 (s, 9H), 1.03-0.94 (m, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 171.34, 170.86, 156.02, 143.88, 143.75, 141.21, 127.61, 126.99, 125.10, 125.06, 119.88, 74.14, 67.11, 66.93, 59.25, 57.80, 52.12, 47.13, 38.20, 28.24, 24.80, 21.04, 15.05, 11.52.

#### H-IIe-Thr(tBu)OMe

Fmoc-lleThr(tBu)OMe (576 μmol, 302 mg) was dissolved in THF (10 mL). EtSH (5.76 mmol, 430 μL, 10 equiv.) was added, followed by DBU (one drop) and the mixture was stirred for 1hr before being concentrated. Column chromatography (50% EA:Tol  $\rightarrow$  EA) yielded the title compound (509 μmol, 154 mg, 88%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.72 (d, J = 9.20 Hz, 1H), 4.48 (dd, J = 9.20, 2.00 Hz, 1H), 4.26-4.22 (m, 1H), 3.71 (s, 3H), 3.35 (d, J = 4 Hz, 1H), 2.00-1.89 (m, 1H), 1.87 (br s, 2H), 1.51-1.49 (m, 1H), 1.25-1.20 (m, 1H), 1.24 (d, J = 6.30 Hz, 3H), 1.12 (s, 9H), 0.99 (d, 6.80 Hz, 3H), 0.94 (t, J = 2 Hz, 3H). ). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 174.81, 171.22, 73.73, 67.12, 59.85, 57.42, 51.86, 37.99, 28.12, 23.76, 20.84, 15.80, 11.66.

#### Fmoc-Ile<sub>2</sub>-Thr(tBu)OMe

H-IleThr(tBu)OMe (509 μmol, 154 mg) was dissolved in DCM. Fmoc-Ile-OH (534 μmol, 189 mg, 1.05 equiv.), HBTU (585 μmol, 222 mg, 1.15 equiv.) and DiPEA ( 1.27 mmol, 210 μL, 2.5 equiv.) were added and the mixture was stirred for 30 min. The mixture was washed with 1M HCl (2x), sat. aq. NaHCO<sub>3</sub> (4x) and brine, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. Column chromatography (10% EA/tol  $\rightarrow$  50% EA/tol) yielded the title compound (320 mg, 502 μmol, 99%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.72 (d, J = 7.50 Hz, 2H), 7.64-7.56 (m, 2H), 7.39-7.31 (m, 3H), 7.29-7.20 (m, 2H), 6.84 (d, J = 9.13 Hz, 1H), 6.01 (d, J = 9.27 Hz, 1H), 4.61-4.51 (m, 2H), 4.46 (dd, J = 10.30, 7.08 Hz, 1H), 4.34-4.22 (m, 2H), 4.22-4.14 (m, 2H), 3.63 (s, 3H), 1.91-1.76 (m, 2H), 1.65-1.51 (m, 2H), 1.29-1.12 (m, 2H), 1.10 (d, J = 6.23 Hz, 3H), 1.07 (s, 9H), 0.96 (d, J = 6.75 Hz, 3H), 0.92-0.83 (m, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 171.41, 171.29, 170.71, 156.15, 143.83, 143.77, 141.08, 127.44, 126.84, 125.13, 125.09, 119.71, 73.89, 67.12, 66.85, 59.23, 57.57, 57.38, 51.85, 47.00, 37.94, 37.61, 28.13, 24.90, 24.76, 20.50, 15.17, 14.91, 11.28.

## H-IIe<sub>2</sub>-Thr(tBu)OMe

Fmoc-Ile<sub>2</sub>Thr(tBu)OMe (320 mg, 502 μmol) was dissolved in THF (10 mL) and EtSH (5.02 μmol, 370 μL, 10 equiv.) was added followed by DBU (1 drop) and the mixture was stirred for 1h before being concentrated. Column chromatography (50% EA/Tol  $\rightarrow$  5% MeOH:EA) yielded the title compound (168 mg, 404 μmol, 81%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 7.86 (d, J = 8.78 Hz, 1H), 6.51 (d, J = 8.89 Hz, 1H), 4.46 (dd, J = 8.94, 1.70 Hz, 1H), 4.39 (dd, J = 8.77, 6.38 Hz, 1H), 4.24 (dq, J = 6.22, 6.21, 6.21, 1.69 Hz, 1H), 3.71 (s, 3H), 3.32 (d, J = 4.00 Hz, 1H), 2.11-1.72 (m, 4H), 1.65-1.53 (m, 1H), 1.49-1.32 (m, 1H), 1.11 (s, 9H), 1.16 (d, J = 6.27 Hz, 3H), 1.02-0.87 (m, 12H), 1.30-1.21 (m, 2H).

#### Ac-Ile<sub>2</sub>-Thr(tBu)OMe

H-Ile<sub>2</sub>Thr(tBu)OMe (93 mg, 224 μmol) was dissolved in 5 mL DCM. DiPEA (270 μmol, 44 μL, 1.2 equiv.) was added, followed by Ac<sub>2</sub>O (246 μmol, 23 μL, 1.1 equiv.). After 1hr, the mixture was washed with 1M HCl (2x), H<sub>2</sub>O and dried over Na<sub>2</sub>SO<sub>4</sub>. Column chromatography (10% EA/tol  $\rightarrow$  60% EA/tol) yielded the title compound (93 mg, 203 μmol, 93%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ ppm 6.89 (d, J = 9.06 Hz, 1H), 6.83 (d, J = 8.99 Hz, 1H), 4.57-4.48 (m, 3H), 4.21 (dq, J = 6.18, 6.18, 6.16, 1.97 Hz, 1H), 3.71 (s, 3H), 1.91-1.70 (m, 2H), 1.62-1.48 (m, 2H), 1.33-1.20 (m, 2H), 1.13 (d, J = 6.30 Hz, 3H), 1.11 (s, 9H), 0.95 (d, J = 6.76 Hz, 3H), 0.92-0.83 (m, 9H), 2.02 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ ppm 171.51,

171.32, 170.79, 169.90, 74.02, 67.14, 57.66, 57.46, 51.96, 37.80, 37.55, 28.20, 24.96, 24.85, 23.00, 20.47, 15.15, 15.00, 11.35, 11.27.

#### Ac-Ile<sub>2</sub>-Thr(tBu)NHNH<sub>2</sub>

Ac-Ile<sub>2</sub>Thr(tBu)OMe (93 mg, 203 µmol) was dissolved in MeOH (7 mL). Hydrazine hydrate (12.2 mmol. 590 µL. 60 equiv.) was added, and the mixture was refluxed for 48 hr after which the mixture was coevaporated with toluene (3x) the residue was used without further purification.

#### Ac(Ser(tBu))<sub>2</sub>-Thr(tBu)-Leu-AMC

Boc-Leu-AMC (57 µmol, 25 mg, 1.1 equiv.) was dissolved in 1:1 DCM:TFA and stirred for 30 min before being coevaporated with toluene (3x) to yield TFA'Hwithout Leu-AMC which was used further purification. Ac(Ser(tBu))<sub>2</sub>Thr(tBu)NHNH<sub>2</sub> (27 mg, 52 µmol, 1 equiv.) was dissolved in 2 mL DMF and 2 mL EA and cooled to -30°C. tBuONO (57 µmol, 6.8 µL, 1.1 equiv.) and HCI (146 µmol, 36 µL 4M/dioxane sln, 2.8 equiv.) were added and the mixture was stirred at -30°C for 3h. The TFA'H-Leu-AMC in DMF was added, followed by DiPEA (260 µmol, 43 µL, 5 equiv.) and the mixture was allowed to warm to RT o/n. The mixture was diluted with EA and washed with H<sub>2</sub>O (3x), dried with Na<sub>2</sub>SO<sub>4</sub>. Column chromatography (DCM → 2% MeOH:DCM) yielded the title compound (11 mg isolated,  $14~\mu mol$ , 27%).  $^{1}H$  NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD 1/1 )  $\delta$  ppm 7.76 (d, J = 2.02 Hz, 1H), 7.66-7.61 (m, 1H), 7.53 (d, J= 8.72 Hz, 1H, 6.18-6.15 (m, 1H), 4.53-4.41 (m, 2H), 4.31-4.27 (m, 2H), 3.77 (dd, 1H)J = 9.31, 3.66 Hz, 1H), 3.67 (dd, J = 9.16, 4.49 Hz, 1H), 3.56 (dd, J = 9.27, 5.95 Hz, 1H), 3.46 (dd, J = 9.13, 7.00 Hz, 1H), 2.42-2.37 (m, 3H), 1.97 (s, 3H), 1.18 (s, 9H), 1.18 (s, 9H), 1.14 (s, 9H), 0.99-0.89 (m, 6H), 1.81-1.63 (m, 3H), 1.26-1.19 (m, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD 1/1)  $\delta$  ppm 171.17, 171.07, 170.95, 170.20, 161.83, 153.62, 153.06, 141.48, 124.92, 124.85, 115.93, 115.77, 112.55, 107.10, 74.82, 74.08, 65.82, 60.92, 60.56, 59.02, 54.57, 53.22, 52.72, 40.27, 27.83, 26.86, 26.77, 24.51, 22.68, 22.11, 21.01, 18.89, 18.07.

Ac-Ser<sub>2</sub>-Thr-Leu-AMC
Ac(Ser(tBu))<sub>2</sub>Thr(tBu)LeuAMC (11 mg, 14 µmol) was dissolved in TFA and the mixture was stirred for 2h. The mixture was coevaporated with tol (3x)

and the residue used without further purification. LCMS (gradient 10%  $\rightarrow$  90% ACN/(0.1% TFA/H<sub>2</sub>O)) 13.5 min run: Rt (min): 5.70 (ESI-MS (m/z): 606.00 (M + H+)). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>/CD<sub>3</sub>OD 1/1) δ ppm 7.89 (d, J = 1.67 Hz, 1H). 7.70-7.64 (m, 2H), 6.25-6.21 (m, 1H), 4.61-4.50 (m, 1H), 4.49-4.40 (m, 2H), 4.36-4.25 (m, 2H), 4.01 (dd, J = 11.15, 4.64 Hz, 1H), 3.93-3.75 (m, 3H), 2.47 (s, 3H), 2.06 (s, 3H), 1.80-1.71 (m, 2H), 1.03-0.92 (m, 6H), 1.33-1.23 (m, 4H).

#### Aclle<sub>2</sub>-Thr(tBu)-Leu-AMC

BocLeuAMC (48 mg, 124 µmol, 1.1 equiv.) was stirred in 1:1 DCM:TFA for 30 min before being coevaporated with toluene (3x). AcIle<sub>2</sub>Thr(tBu)NHNH<sub>2</sub> (113 µmol, 52 mg) was dissolved in 12 mL DMF:EA 1:1 and cooled to -30°C. tBuONO (124 µmol, 15 µl, 1.1 equiv.) and HCl (316 µmol, 79 µL 4M/dioxane sln, 2.8 equiv.) were added and the mixture was stirred at -30°C for 3 hr. The TFA H-Leu-AMC in DMF was added, followed by DiPEA (565 µmol, 93 µL, 5 equiv.) and the mixture was allowed to warm to RT o/n. The mixture was diluted with EA and washed with  $H_2O$  (3x), dried with  $Na_2SO_4$ . Column chromatography (1% MeOH:DCM  $\rightarrow$  4% MeOH:DCM, 2x) yielded the title compound (13 mg isolated, 18 µmol, 16%). 1H NMR (400 MHz, CD<sub>3</sub>OD, CDCl<sub>3</sub>)  $\delta$  ppm 8.06-7.96 (m, 1H), 7.86-7.83 (m, 1H), 7.65-7.59 (m, 2H), 6.24-6.21 (m, 1H), 4.66-4.58 (m, 1H), 4.51-4.46 (m, 1H), 4.35-4.26 (m, 2H), 4.14-4.08 (m, 1H), 2.48-2.45 (m, 3H), 2.03 (s, 3H), 1.92-1.79 (m, 2H), 1.78-1.66 (m, 3H), 1.62-1.49 (m, 2H), 1.22-1.14 (m, 2H), 1.23 (s, 9H), 1.11 (d, J = 1.67 Hz, 3H), 1.02-0.86 (m, 18H).

### Aclle<sub>2</sub>-Thr-Leu-AMC

 $AcIle_2Thr(tBu)LeuAMC$  (13 mg, 18 µmol) was dissolved in TFA and the mixture was stirred for 2h. The mixture was coevaporated with tol (3x)

and the residue used without further purification. LCMS (gradient  $10\% \rightarrow 90\%$  ACN/(0.1% TFA/H<sub>2</sub>O)) 13.5 min run: Rt (min): 8.09 (ESI-MS (m/z): 658.07 (M + H+)). <sup>1</sup>H NMR (400 MHz, CDCI<sub>3</sub>/CD<sub>3</sub>OD 1/1)  $\delta$  ppm 8.06-7.99 (m, 1H), 7.88 (d, J = 1.32 Hz, 1H), 7.67-7.61 (m, 2H), 6.23 (s, 1H), 4.65-4.57 (m, 1H), 4.42-4.38 (m, 1H), 4.32-4.16 (m, 3H), 2.47 (s, 3H), 2.04 (s, 3H), 1.04-0.82 (m, 18H), 1.98-1.48 (m, 5H), 1.34-1.16 (m, 7H).